999 resultados para Pontederia lanceolata
Resumo:
应用除趋势对应分析(DCA)与双向指示种分析(TWINSPAN)对濒危植物毛柄小勾儿茶(Berchemiella wilsoniivar.pubipetiolata)69块样地进行了排序与分类,共划分9个群落类型。结果表明,毛柄小勾儿茶生境特异性高。毛柄小勾儿茶在枫香(Liquidambar formosana)林、马尾松(Pinusmassoniana)+杉木(Cunninghamia lanceolata)+青冈栎(Quercus glauca)针阔混交林、杂木林和青榨槭(Acer davidii)+大果山胡椒(Lindera praecox)林中生长较好。这4个群落林下层优势种具有相似性:草本层的优势种中均有求米草(Oplismenus undulatifolius),常有三脉紫菀(Aster ageratoides);灌木层优势种常有大果山胡椒。毛柄小勾儿茶分布于海拔500~900 m的低山区,多分布于湿润、排水良好的沟谷边,生境坡向多为阴坡。
Resumo:
连栽土壤对杉木幼苗生长影响的研究马越强廖利平杨跃军汪思龙高洪陈楚莹(中国科学院沈阳应用生态研究所,110015)刘更有(湖南省会同县林科所,418307)EfectsofReplantSoilontheGrowthofC.lanceolataSedl...
Resumo:
According to two times investigation on Scarabaeoidea of Huitong secondary Cunninghamia lanceolata forest in early spring,summer, the number of species Scarabaeoidea in early spring,and summer is 23 and 24,respectively; the Shannon diversity index is 2.067 and 2.417, respectivety; the Shannon evenness is 0.659 and 0.761.In early spring, the dominant species are Malatera horosericea,Melolontha frater and Granida albosparsa.In summer, The dominant species are Anomala vividana, Anomala alabopilosa and Anomala lucens.The species abundance distribution of Scarabaeoidea in two different seasons is fitted in to logarithmic series distribution. A small number of species often become dominant in different seasons.
Resumo:
杉木 (Cunninghamia lanceolata)与主要阔叶造林树种叶凋落物混合分解实验是用网袋法进行的。目的是检验“杉木叶凋落物与阔叶树叶凋落物混合分解时 ,杉木叶凋落物的分解速率和养分释放都可得到加强”这样一个假设。结果发现 ,杉木与火力楠 (Michelia macclurei var. sublanea)、桤木 (Alnus cremastogyne)叶凋落物混合分解时分解速率有较强的促进作用 ,而与红栲 (Castanopsishystrix)、樟树 (Cinnamomum camphora)、刺楸 (K alopanax pictus)、木荷 (Schima superba)叶凋落物分解时不存在相互作用。至于养分的释放 ,除与木荷叶凋落物混合分解时没有发现相互作用外 ,而与其它阔叶树种叶凋落物混合分解时或强或弱表现出促进作用 ,而且促进作用的强弱与阔叶树叶凋落物初始 N含量有一定的正相关关系。如果仅从阔叶树叶凋落物与杉木叶凋落物混合分解的作用形式和强弱来考虑选择杉木的伴生树种时 ,首选树种是桤木 ,其次是刺楸 ,再其次是火力楠、红栲 ,最后才是樟树和木荷。当然只依据此单一条件来选择混交树种还不科学。
Resumo:
Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.
Resumo:
2009
Resumo:
1. The effect of spatial scale on the interactions between three hymenopteran parasitoids and their weevil hosts was investigated. The parasitoid Mesopolobus incultus (Walker) parasitised Gymnetron pascuorum Gyll.; the parasitoids Entodon sparetus (Walker) and Bracon sp. parasitised Mecinus pyraster Herbst. Both of these weevils develop inside the seedhead of Plantago lanceolata L. but occupy different niches. Seedheads were sampled annually from 162 plants at each of two experimental sites consisting of a series of habitat patches of two distinct sizes. Data were analysed from three site-years. 2. Parasitoid densities at each site-year were closely related to the abundance of their respective weevil hosts. The overall proportion of hosts parasitised was more variable for M. incultus than for E. sparetus and Bracon sp. 3. Changes in spatial scale affected the variability of parasitoid densities. For M. incultus, there was generally a greater degree of additional heterogeneity for all increases of scale; for E. sparetus, this was true only at the largest scales; for Bracon sp., all components of variance were negative. 4. The rate of parasitism was related to host density in different ways at different spatial scales. Mesopolobus incultus exhibited inverse density dependence at the finest (seedhead) scale, direct density dependence at the intermediate (plant) scale, and density independence at the large (habitat area 729 m2) scale. Entodon sparetus showed no response to variation in host density at any spatial scale. Bracon sp. showed direct density dependence only at the intermediate and largest scales. 5. Parasitoids E. sparetus and Bracon sp. seemed able to detect more than one M. pyraster individual in seedheads with multiple host occupancy; a greater incidence of conspecific parasitoids than expected emerged from such seedheads.
Resumo:
Johnson's SB and the logit-logistic are four-parameter distribution models that may be obtained from the standard normal and logistic distributions by a four-parameter transformation. For relatively small data sets, such as diameter at breast height measurements obtained from typical sample plots, distribution models with four or less parameters have been found to be empirically adequate. However, in situations in which the distributions are complex, for example in mixed stands or when the stand has been thinned or when working with aggregated data, then distribution models with more shape parameters may prove to be necessary. By replacing the symmetric standard logistic distribution of the logit-logistic with a one-parameter “standard Richards” distribution and transforming by a five-parameter Richards function, we obtain a new six-parameter distribution model, the “Richit-Richards”. The Richit-Richards includes the “logit-Richards”, the “Richit-logistic”, and the logit-logistic as submodels. Maximum likelihood estimation is used to fit the model, and some problems in the maximum likelihood estimation of bounding parameters are discussed. An empirical case study of the Richit-Richards and its submodels is conducted on pooled diameter at breast height data from 107 sample plots of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). It is found that the new models provide significantly better fits than the four-parameter logit-logistic for large data sets.
Resumo:
The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.
Resumo:
Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D1), Simpson's dominance (D2), Simpson's evenness (E), and Berger–Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P. lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.
Resumo:
1 Adaptation of plant populations to local environments has been shown in many species but local adaptation is not always apparent and spatial scales of differentiation are not well known. In a reciprocal transplant experiment we tested whether: (i) three widespread grassland species are locally adapted at a European scale; (ii) detection of local adaptation depends on competition with the local plant community; and (iii) local differentiation between neighbouring populations from contrasting habitats can be stronger than differentiation at a European scale. 2 Seeds of Holcus lanatus, Lotus corniculatus and Plantago lanceolata from a Swiss, Czech and UK population were sown in a reciprocal transplant experiment at fields that exhibit environmental conditions similar to the source sites. Seedling emergence, survival, growth and reproduction were recorded for two consecutive years. 3 The effect of competition was tested by comparing individuals in weeded monocultures with plants sown together with species from the local grassland community. To compare large-scale vs. small-scale differentiation, a neighbouring population from a contrasting habitat (wet-dry contrast) was compared with the 'home' and 'foreign' populations. 4 In P. lanceolata and H. lanatus, a significant home-site advantage was detected in fitness-related traits, thus indicating local adaptation. In L. corniculatus, an overall superiority of one provenance was found. 5 The detection of local adaptation depended on competition with the local plant community. In the absence of competition the home-site advantage was underestimated in P. lanceolata and overestimated in H. lanatus. 6 A significant population differentiation between contrasting local habitats was found. In some traits, this small-scale was greater than large-scale differentiation between countries. 7 Our results indicate that local adaptation in real plant communities cannot necessarily be predicted from plants grown in weeded monocultures and that tests on the relationship between fitness and geographical distance have to account for habitat-dependent small-scale differentiation. Considering the strong small-scale differentiation, a local provenance from a different habitat may not be the best choice in ecological restoration if distant populations from a more similar habitat are available.
Resumo:
Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.
Resumo:
Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 × 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g kg −1 DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg day −1). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g kg −1) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. −4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g kg −1), 18% lower DMD (P < 0.01, 585 vs. 713 g kg −1), 42% lower CPD (P < 0.001, 407 vs. 699 g kg −1), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g kg −1 DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi identificar as plantas aquáticas e os níveis de infestação de cada espécie em Porto Primavera antes do enchimento final do reservatório. Foram avaliados todos os focos de vegetação aquática no reservatório (72 pontos), sendo os pontos demarcados com um aparelho de GPS. As espécies foram identificadas e estimouse visualmente (tamanho da área) a distribuição proporcional das plantas no foco de infestação. Após a identificação, foram encontradas 18 espécies de plantas aquáticas vegetando no reservatório, das quais foram determinadas a frequência de espécie de planta aquática e a distribuição dentro do sistema de geração de energia. As espécies encontradas no reservatório foram: Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes, Paspalum repens, Cyperus brevifolius, Paspalum conspersum, Echinochloa polystachya, Egeria densa, Egeria najas, Polygonum hidropiperoides, Polygonum lapathifolium, Alternanthera philoxeroides, Eleocharis sellowiana, Nymphaea ampla, Pontederia cordata, Salvinia auriculata, Salvinia rotundifolia e Typha angustifolia. As maiores frequências relativas foram observadas em: E. azurea (36,11%), E. crassipes (16,67%), P. stratiotes (13,89%), S. auriculata (13,89%), C. brevifolius (11,11%) e P. lapathifolium (6,94%).