716 resultados para Polyunsaturated fatty acid
Resumo:
OBJECTIVE: the aim of this study was to determine the effects of diets rich in saturated and polyunsaturated fatty acids on metabolic pathways and the relation of metabolic shifting to oxidative stress in cardiac tissue.METHODS: Male Wistar rats (age, 60 d; n = 10) were fed with a control low-fat diet, a diet rich in saturated fatty acids (SFAs), or a diet rich in polyunsaturated fatty acids (PUFAs). After 5 wk of treatment, sera were used for protein and lipid determinations. Protein, glycogen, triacylglycerol, lactate dehydrogenase, citrate synthase, beta-hydroxyacyl coenzyme-A dehydrogenase, catalase, glutathione peroxidase, superoxide dismutase, lipoperoxide, and lipid hydroperoxide were measured in cardiac tissue.RESULTS: the SFA group had higher triacylglycerol, cholesterol, low-density lipoprotein cholesterol, and atherogenic index (ratio of cholesterol to high-density lipoprotein) than did the PUFA and control groups. The PUFA group had low serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol as compared with the SFA group. SFA increased myocardial lipid hydroperoxide and diminished glutathione peroxidase. Despite the beneficial effects on serum lipids, the PUFA diet led to the highest levels of myocardial lipoperoxide and lipid hydroperoxide and diminished superoxide dismutase and catalase activities. The PUFA effects were related to increased feed efficiency, increased susceptibility to lipoperoxidation, and metabolic shifting in cardiac tissue. PUFA elevated triacylglycerol levels and decreased myocardial glycogen concentrations. The ratios of lactate dehydrogenase to citrate synthase and beta-hydroxyacyl coenzyme-A dehydrogenase to citrate synthase were increased, indicating myocardial reduction of tricarboxylic acid cycle.CONCLUSIONS: PUFAs have been recommended as a therapeutic measure in preventive medicine to lower serum cholesterol, but PUFAs increased oxidative stress in the heart by providing cardiac susceptibility to lipoperoxidation and shifting the metabolic pathway for energy production. The control diet, which was much lower in calories and fat, produced better overall clinical outcomes, better fat profiles, and less oxidative stress than did the diets rich in fatty acids.
Fatty acid production by four strains of Mucor hiemalis grown in plant oil and soluble carbohydrates
Resumo:
Four Mucor hiemalis strains (M1, M2, M3 and M4), isolated from soil at a depth of 0 - 15 cm in the Juréia-Itatins Ecology Station (JIES), in the state of São Paulo, Brazil and were evaluated for the production of γ-linolenic (GLA) and other unsaturated fatty acids. Five growth variables (temperature, pH, carbon source, nitrogen source, and vegetable oils) were studied. Liquid media containing 2% vegetable oil (palm oil, canola oil, soybean oil, sesame oil, or sunflower oil) or 2% carbohydrate (fructose, galactose, glycerol, glucose, lactose, maltose, sucrose, sorbitol or xylose) and 1% yeast extract as a nitrogen source were used. The greatest biomass production was observed with M3 and M4 strains in palm oil (91.5 g l -1) and sunflower oil (68.3 g l -1) media, respectively. Strain M4 produced greater quantities of polyunsaturated acids in medium containing glucose. The GLA production in the M4 biomass was 1,132.2 mg l -1 in glucose medium. Plant oils were inhibitors of fatty acid production by these strains. © 2007 Academic Journals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of alpha-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Rainbow trout Oncorhynchus mykiss triploids are regularly produced in fish farms to improve growth because the triploid females do not develop ovaries during the reproductive cycle. In this study, the tissue fatty acid allocations in triploid and diploid females were compared during the reproductive cycle to determine whether the ploidy influences the fatty acid profile of fish produced in aquaculture. The ovaries, liver, and white muscle fatty acid contents of diploid and triploid females were analyzed during the reproductive cycle. Diploid females tend to accumulate more polyunsaturated fatty acids than triploids during some phases of the reproductive cycle, and this profile was compensated by an increase in saturated and monounsaturated fatty acids in triploid females. Arachidonic acid (C20:4n6) was the main n6 polyunsaturated fatty acid in the ovaries of diploid females during the most advanced phases of the reproductive cycle, and docosahexaenoic acid (C22:6n3) was the main n3 polyunsaturated fatty acid. In triploid females, the percentage of both of these polyunsaturated fatty acids was lower than in diploid females during the most advanced phases of the reproductive cycle. In general, the lack of ovary development altered the hepatic synthesis of some fatty acids, mainly monounsaturated and polyunsaturated fatty acids, decreasing the content of the main fatty acids in the white muscle and, consequently, the mobilization of these specific fatty acids to the ovaries.
Resumo:
Coenzyme Q (ubiquinone or Q) plays a well known electron transport function in the respiratory chain, and recent evidence suggests that the reduced form of ubiquinone (QH2) may play a second role as a potent lipid-soluble antioxidant. To probe the function of QH2 as an antioxidant in vivo, we have made use of a Q-deficient strain of Saccharomyces cerevisiae harboring a deletion in the COQ3 gene [Clarke, C. F., Williams, W. & Teruya, J. H. (1991) J. Biol. Chem. 266, 16636-16644]. Q-deficient yeast and the wild-type parental strain were subjected to treatment with polyunsaturated fatty acids, which are prone to autoxidation and breakdown into toxic products. In this study we find that Q-deficient yeast are hypersensitive to the autoxidation products of linolenic acid and other polyunsaturated fatty acids. In contrast, the monounsaturated oleic acid, which is resistant to autoxidative breakdown, has no effect. The hypersensitivity of the coq3delta strains can be prevented by the presence of the COQ3 gene on a single copy plasmid, indicating that the sensitive phenotype results solely from the inability to produce Q. As a result of polyunsaturated fatty acid treatment, there is a marked elevation of lipid hydroperoxides in the coq3 mutant as compared with either wild-type or respiratory-deficient control strains. The hypersensitivity of the Q-deficient mutant can be rescued by the addition of butylated hydroxytoluene, alpha-tocopherol, or trolox, an aqueous soluble vitamin E analog. The results indicate that autoxidation products of polyunsaturated fatty acids mediate the cell killing and that QH2 plays an important role in vivo in protecting eukaryotic cells from these products.
Resumo:
A transplantable murine colon adenocarcinoma (MAC16) was utilised as a model of human cancer cachexia. This tumour has been found to produce extensive weight loss, characterised by depletion of host body protein and lipid stores at a small tumour burden. This weight loss has been found to be associated with production by the tumour of a lipolytic factor, activity of which was inhibited in vitro by the polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA). EPA has also been shown to possess anti-tumour and anti-cachectic activity in vivo, leading to the hypothesis that fatty acids mobilised by the lipolytic factor supply a growth requirement of the MAC16 tumour. In this study mobilisation and sequestration of fatty acids by the tumour was found to be non-specific, although a relationship between weight loss and arachidonic acid (AA) concentration was found in both tumour-bearing mice, and human cancer patients. The anti-tumour effect of EPA, which was found to be associated with an increase in cell loss, but not its anti-cachectic activity, was reversed by the administration of the PUFAs oleic acid (OA) and linoleic acid (LA). LA was also found to be capable of stimulating tumour growth. Inhibition of either the cyclooxygenase or lipoxygenase pathways was found to result in reduction of tumour growth, leading to the implication of one of the metabolites of LA or AA in tumour growth and cachexia. The ethyl ester of EPA was found to be inactive against the growth and cachexia of the MAC16 tumour, due to its retarded uptake compared with the free acid. The anti-proliferative agent 5-fluorouracil was found to cause tumour growth inhibition, and when given in combination with EPA, reduced the phase of tumour regrowth observed after 4 to 5 days of treatment with EPA.
Resumo:
OBJECTIVE: The present study was carried out to investigate effects of meals, rich in either saturated fatty acids (SFA), or n-6 or n-3 fatty acids, on postprandial plasma lipid and hormone concentrations as well as post-heparin plasma lipoprotein lipase (LPL) activity. DESIGN: The study was a randomized single-blind study comparing responses to three test meals. SETTING: The volunteers attended the Clinical Investigation Unit of the Royal Surrey County Hospital on three separate occasions in order to consume the meals. SUBJECTS: Twelve male volunteers with an average age of 22.5 +/- 1.4 years (mean +/- SD), were selected from the University of Surrey student population; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: Three meals were given in the early evening and postprandial responses were followed overnight for 11h. The oils used to prepare each of the three test meals were: a mixed oil rich in saturated fatty acids (SFA) which mimicked the fatty acid composition of the current UK diet, corn oil, rich in n-6 fatty acids and a fish oil concentrate (MaxEPA) rich in n-3 fatty acids. The oil under investigation (40 g) was incorporated into the test meals which were otherwise identical [208 g carbohydrates, 35 g protein, 5.65 MJ (1350 kcal) energy]. Postprandial plasma triacylglycerol (TAG), gastric inhibitory polypeptide (GIP), and insulin responses, as well as post-heparin LPL activity (measured at 12 h postprandially only) were investigated. RESULTS: Fatty acids of the n-3 series significantly reduced plasma TAG responses compared to the mixed oil meal (P < 0.05) and increased post-heparin LPL activity 15 min after the injection of heparin (P < 0.01). A biphasic response was observed in TAG, with peak responses occurring at 1 h and between 3-7 h postprandially. GIP and insulin showed similar responses to the three test meals and no significant differences were observed. CONCLUSION: We conclude that fish oils can decrease postprandial plasma TAG levels partly through an increase in post-heparin LPL activity, which however, is not due to increased GIP or insulin concentrations.
Resumo:
After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.
Resumo:
The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE-GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane
Resumo:
2.4. The author may post the VoR version of the article (in PDF or HTML form) in the Institutional Repository of the institution in which the author worked at the time the article was first submitted, or (for appropriate journals) in PubMed Central or UK PubMed Central or arXiv, no sooner than one year after first publication of the article in the Journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the Journal at Cambridge Journals Online.