943 resultados para Polystyrene-b-polyethylene oxide
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
In this work, it was studied the behavior of the nonionic surfactant aqueous solutions, containing or not a hydrotropic agent, by resonance magnetic nuclear (NMR). We have studied monofunctional diblock copolymers of poly(propylene oxide-ethylene oxide) (R-PPO-PEO-OH, where R length is linear C4) as nonionic surfactant and sodium p-toluenesulfonate (NaPTS) as hydrotropic agent. The critical micelle concentration (CMC) of the aqueous copolymer solution was obtained from ¹H-NMR. The preliminary study of the interaction between the copolymer, under the unimer and micelle forms, and the hydrotrope, in aqueous solutions, was evaluated by ¹H-NMR and 13C-NMR.
Resumo:
Le protocole pour le greffage irréversible du copolymère amphiphile polystyrène-b-poly (acrylate de sodium) PS-b-PANa, sur un substrat de mica et de silice hydrophobe a été développé, en utilisant la méthode de greffage à partir de solution. Les propriétés de surface du bloc chargé ont été évaluées. L’effet de la force ionique sur le gonflement des chaînes a été investigué par ellipsométrie. Les forces d’interaction entre les surfaces recouvertes du copolymère ont été évaluées par la technique SFA. Les profils de force ont démontré être stables et nettement répulsifs en compression et décompression, montrant l’irréversibilité du greffage. Les forces de frottement entre les brosses de PANa sont élevées, mais aucune évidence d’endommagement de la surface n’a été observée. La comparaison entre le comportement à la surface des chaînes de l’acide polyacrylique PAA et celles du PANa, obtenues par deux méthodes de greffage différentes, est également investiguée.
Resumo:
L'auto-assemblage des copolymères à bloc (CPBs) attire beaucoup d'intérêt grâce à leur capacité de générer spontanément des matériaux ordonnés avec des propriétés uniques. Les techniques Langmuir-Blodgett (LB) et Langmuir-Schaefer (LS) sont couramment utilisées pour produire des monocouches ou des films ultraminces à l'interface air/eau suivi de transfert aux substrats solides. Les films LB/LS de CPBs amphiphiles s'auto-assemblent dans des morphologies variables dépendamment de la composition du CPB ainsi que d'autres facteurs. Dans notre travail, nous avons étudié les films LB/LS de polystyrène-b-poly(4-vinyl pyridine) (PS-P4VP) et leurs complexes supramoléculaires avec le naphtol (NOH), l'acide naphtoïque (NCOOH) et le 3-n-pentadécylphenol (PDP). La première partie de ce mémoire est consacré à l'investigation du PS-P4VP complexé avec le NOH et le NCOOH, en comparaison avec le PS-P4VP seul. Il a été démontré qu'un plateau dans l'isotherme de Langmuir, indicatif d'une transition de premier ordre, est absent à des concentrations élevées des solutions d'étalement des complexes. Cela a été corrélé avec l'absence de morphologie en nodules avec un ordre 2D hexagonal à basse pression de surface. L'ordre au-delà de la pression de cette transition, lorsque présente, change à un ordre 2D carré pour tout les systèmes. La deuxième partie du la mémoire considère à nouveau le système PS-P4VP/ PDP, pour lequel on a démontré antérieurement que la transition dans l'isotherme correspond a une transition 2D d'un ordre hexagonal à un ordre carré. Cela est confirmé par microscopie à force atomique, et, ensuite, on a procédé à une étude par ATR-IR des films LB pour mieux comprendre les changements au niveau moléculaire qui accompagnent cette transition. Il a été constaté que, contrairement à une étude antérieure dans la littérature sur un autre système, il n'y a aucun changement dans l'orientation des chaînes alkyles. Au lieu de cela, on a découvert que, aux pressions au-delà de celle de la transition, le groupe pyridine, qui est orienté à basse pression, devient isotrope et qu'il y a une augmentation des liaisons hydrogènes phénol-pyridine. Ces observations sont rationalisées par un collapse partiel à la pression de transition de la monocouche P4VP, qui à basse pression est ordonné au niveau moléculaire. Cette étude a mené à une meilleure compréhension des mécanismes moléculaires qui se produisent à l'interface air/eau, ce qui fournit une meilleure base pour la poursuite des applications possibles des films LB/LS dans les domaines de nanotechnologie.
The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries
Resumo:
The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.
Resumo:
The self-assembly in aqueous solution of three novel telechelic conjugates comprising a central hydrophilic polymer and short (trimeric or pentameric) tyrosine end-caps has been investigated. Two of the conjugates have a central poly(oxyethylene) (polyethylene oxide, PEO) central block with different molar masses. The other conjugate has a central poly(l-alanine) (PAla) sequence in a purely amino-acid based conjugate. All three conjugates self-assemble into β-sheet based fibrillar structures, although the fibrillar morphology revealed by cryogenic-TEM is distinct for the three polymers—in particular the Tyr5-PEO6k-Tyr5 forms a population of short straight fibrils in contrast to the more diffuse fibril aggregates observed for Tyr5-PEO2k-Tyr5 and Tyr3-PAla-Tyr3. Hydrogel formation was not observed for these samples (in contrast to prior work on related systems) up to quite high concentrations, showing that it is possible to prepare solutions of peptide–polymer-peptide conjugates with hydrophobic end-caps without conformational constraints associated with hydrogelation. The Tyr5-PEO6k-Tyr5 shows significant PEO crystallization upon drying in contrast to the Tyr5-PEO2k-Tyr5 conjugate. Our findings point to the remarkable ability of short hydrophobic peptide end groups to modulate the self-assembly properties of polymers in solution in model peptide-capped “associative polymers”. Retention of fluidity at high conjugate concentration may be valuable in potential future applications of these conjugates as bioresponsive or biocompatible materials, for example exploiting the enzyme-responsiveness of the tyrosine end-groups
Resumo:
The aim of the present study was to evaluate the effect of overstimulation of beta-adrenoceptors on vascular inflammatory mediators. Wistar rats were treated with the beta-adrenoceptor agonist isoproterenol (0.3 mg(.)kg(-1.)day(-1) sc) or vehicle (control) for 7 days. At the end of treatment, the right carotid artery was catheterized for arterial and left ventricular (LV) hemodynamic evaluation. Isoproterenol treatment increased LV weight but did not change hemodynamic parameters. Aortic mRNA and protein expression were quantified by real-time RT-PCR and Western blot analysis, respectively. Isoproterenol enhanced aortic mRNA and protein expression of IL-1 beta (124% and 125%) and IL-6 (231% and 40%) compared with controls but did not change TNF-alpha expression. The nuclear-to-cytoplasmatic protein expression ration of the NF-beta B p65 subunit was increased by isoproterenol treatment (51%); in addition, it reduced the cytoplasmatic expression of I kappa B-alpha (52%) in aortas. An electrophoretic mobility shift assay was performed using the aorta, and increased NF-kappa B DNA binding (31%) was observed in isoproterenol-treated rats compared with controls (P < 0.05). Isoproterenol treatment increased phenylephrine-induced contraction in aortic rigs (P < 0.05), which was significantly reduced by superoxide dismutase (150 U/ml) and sodium salicylate (5 mM). Cotreatment with thalidomide (150 mg(.)kg(-1.)day(-1) for 7 days) also reduced hyperreactivity to phenylephrine induced by isoproterenol. In conclusion, overstimulation of beta-adrenoceptors increased proinflammatory cytokines and upregulated NF-kappa B in the rat aorta. Moreover, local oxidative stress and the proinflammatory state seem to play key roles in the altered vascular reactivity of the rat aorta induced by chronic beta-adrenergic stimulation.
Resumo:
The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.
Resumo:
Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of capase-3, and increasing cell death. The over-expressaion of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. lit cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitiosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.
Resumo:
We report the effect of solvent on the rhodamine 6G encapsuled into channels of mesoporous silica, synthesized by two-step process that gives intermediary stable hybrid micelles. Mesoporous materials have been obtained by the method that involves surfactant micelles (mainly cationic) and inorganic precursor of the structure to be obtained. MSU-X type mesoporous silica has been synthesized with polyethylene oxide surfactant as the directing-structure agent and tetraethyl orthosilicate Si(OEt)(4) as the silica source. The influence of the solvent on the encapsulation of rhodamine dye was systematically explored, specially its influence on the luminescence properties. Rhodamine 6G encapsuled into mesoporous silica channel was characterized by UV-Vis and luminescence spectroscopies, scanning electron microscopy, small angle x ray scattering and N(2) sorption-desorption. The pore size and the solvent effects into luminescence dye encapsuled into mesoporous silica channels are observed in the visible absorption and emission spectra of rhodamine 6G. The intense photo luminescence band of rhodamine 6G dye is in 500 to 600 nm region. The observed shift of the absorption and emission bands can be assigned to the effect of the solvents dielectric constant and pore size of mesoporous silica.
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)