995 resultados para Polymeric membranes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of polymeric amine, namely, sulfonated cardo poly(arylene ether sulfone) (SPES-NH2) was synthesized and used for the preparation of thin-film composite membrane. The TFC membranes were prepared on a polysulfone supporting film through interfacial polymerization with trimesoyl chloride (TMC) solutions and amine solutions containing SPES-NH2 and m-phenylenediamine (MPDA). The resultant membranes were characterized with water permeation performance, chemical structure, hydrophilicity of active layer and membrane morphology including top surface and cross-section.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, hydrophilic microporous cellulose nitrate membranes have been surface-modified by plasma polymerization of octafluorocyclobutane (OFCB). The microporous composite membranes with a hydrophilic layer sandwiched between two hydrophobic layers have been obtained. The obtained composite membranes have been used in a membrane distillation (MD) process and have exhibited good performance. The effects of polymerization conditions, such as glow-discharge power and deposition time, on the structures and MD performances of the obtained composite membranes have been investigated by SEM, X-ray microscopical analysis, and XPS. The polymerization conditions should be as mild as possible in order to prepare the hydrophobic composite membrane with good MD performance. The typical MD behaviors of the obtained hydrophobic composite membranes are in agreement with that of hydrophobic membranes directly prepared from hydrophobic polymeric materials, like PVDF, PTFE, or PP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~ 1 × 10− 4 mol L− 1, at pH 5, and a detection limitof ~ 8 × 10− 5 mol L− 1. Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El glifosat, N-(fosfonometil) glicina, és un dels herbicides més utilitzats arreu del món a causa de la seva baixa toxicitat i al seu ampli espectre d'aplicació. A conseqüència del gran ús que se'n fa, és necessari monitoritzar aquest compost i el seu principal metabòlit, l'àcid aminometilfosfònic (AMPA), en el medi ambient. S'han descrit diversos mètodes instrumentals basats en cromatografia de gasos (GC) i de líquids (HPLC), sent aquesta darrera l'opció més favorable a causa del caràcter polar dels anàlits. Per assolir nivells de concentració baixos cal, però, la preconcentració dels anàlits. En aquest treball s'estudien diferents alternatives amb aquest objectiu. S'ha avaluat la tècnica de membrana líquida suportada (SLM) on la membrana consisteix en una dissolució orgànica, que conté un transportador (en el nostre cas, un bescanviador d'anions comercial, Aliquat 336), que impregna un suport polimèric microporós que se situa entre dues solucions aquoses: la de càrrega, que conté els anàlits inicialment, i la receptora, on es retenen els anàlits després del seu transport a través de la membrana. Les condicions d'extracció més adequades s'obtenen treballant en medi bàsic amb NaOH on els anàlits estan en forma aniònica i les majors recuperacions s'obtenen amb HCl 0,1 M o NaCl 0,5 M, la qual cosa indica que l'ió clorur és la força impulsora del transport. Un cop dissenyat el sistema, es duen a terme experiments de preconcentració amb dues geometries diferents: un sistema de membrana laminar (LSLM) on recircula la fase receptora i un sistema de fibra buida (HFSLM). Els millors resultats s'obtenen amb el mòdul de fibra buida, amb factors de concentració de 25 i 3 per a glifosat i AMPA, respectivament, fent recircular durant 24 hores 100 ml de solució de càrrega i 4 ml de solució receptora. També s'aplica una tècnica més selectiva, la cromatografia d'afinitat amb ió metàl·lic immobilitzat (IMAC), basada en la interacció entre els anàlits i un metall immobilitzat en una resina a través d'un grup funcional d'aquesta. En aquest estudi s'immobilitza pal·ladi al grup funcional 8-hidroxiquinoleïna de la resina amb matriu acrílica Spheron Oxine 1000 i s'avalua per a l'extracció i preconcentració de glifosat i AMPA. Per a ambdós anàlits l'adsorció és del 100 % i les recuperacions són superiors al 80 % i al 60 % per a glifosat i AMPA, respectivament, utilitzant HCl 0,1 M + NaCl 1 M com a eluent. Aquests resultats es comparen amb els obtinguts amb dues resines més, també carregades amb pal·ladi: Iontosorb Oxin 100, que té el mateix grup funcional però matriu de cel·lulosa, i Spheron Thiol 1000, on el grup funcional és un tiol i la matriu també és acrílica. Per al glifosat els resultats són similars amb totes les resines, però per a l'AMPA la resina Spheron Thiol és la única que proporciona recuperacions superiors al 93 %. Finalment, una altra opció estudiada és l'acoblament de dues columnes de cromatografia líquida (LC-LC). En l'estudi l'objectiu és millorar el mètode existent per a glifosat i AMPA en aigües naturals on el LOD era de 0,25 ug/l. El mètode consisteix en la derivatització precolumna amb el reactiu fluorescent FMOC i l'anàlisi amb l'acoblament LC-LC-fluorescència. Variant lleugerament les condicions de derivatització s'aconsegueix quantificar 0,1 ug/l de glifosat i AMPA. Es fortifiquen aigües naturals amb 0,1, 1 i 10 ug/l dels anàlits per validar el mètode. S'obtenen recuperacions d'entre el 85 % i el 100 %, amb desviacions estàndard relatives inferiors al 8 %. Aplicant una tècnica de preconcentració prèvia a la derivatització i anàlisi utilitzant una resina de bescanvi aniònic, Amberlite IRA-900, es millora la sensibilitat del mètode i s'assoleix un LOD per al glifosat de 0,02 ug/l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flat sheet polymeric UF membranes of 30000 MWCO were obtained from Millipore Inc. Polypropylene spacers of a 50 mil (1.3 mm) thickness were obtained from KOCH membrane systems. A single 30 cm^sup 2^ membrane sheet was sandwiched with a spacer on the feed side of a cross flow Minitan S unit (Millipore Inc). The unit was immersed in a 50 kHz ultrasonic bath that was switched on as required. All experiments used re-constituted spray-dried whey powder to foul the membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we investigated the synthesis of composite organic and inorganic membranes for proton conduction. Particles derived from metal alkoxides (M(OR)n) sol-gel processes (Ti, Zr, W with phosphoric acid) were embedded in polymeric matrices of poly-vinyl alcohol, (3-glycidoxypropyl)-trimethoxysilane and ethylene glycol. The structure of the composite membranes was complex as several IR peaks were convoluted, indicating the assignment of several functional groups. However, the peaks assigned to OH groups reduced in intensity in the composite membranes, indicating that cross-linking of hydroxyl groups in the organic and inorganic phases of the membrane may have occurred. The particles allowed for re-arrangement of the polymer matrix, as crystallinity was reduced compared to a polymer blank membrane. The composite membrane process resulted in homogeneous dispersion of nanoparticles into the polymer film. Proton conduction of the inorganic phase was mainly dominated by titania. Binary mixtures of titania phosphate (sample name TiP) resulted in proton conduction of 7.15 × 10−2 S.cm−1, one order of magnitude higher than zirconia phosphate (ZrP). The addition of Zr and W to TiP forming ternary or quaternary phases also led to lower proton conduction as compared to TiP. Similar trends were also observed for the composite membranes, though the TiP composite membrane proton conduction reduced after several hours of testing at 50°C, which was mainly attributed to acid leaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates and compares the performance of two different types of ultrafiltration (UF) membranes in the recovery of water from secondary treated wastewater. Filtration experiments were carried out on a pilot scale cross-flow unit using synthetic wastewater similar to the quality of secondary treated wastewater by varying the operating parameters such as transmembrane pressure (TMP), feed composition and membrane configuration. The filtration experiments demonstrated that the flux recovery through spiral polymeric UF membrane was more sensitive to the variation in TMP compared to the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The fouling resistance, particularly irreversible resistance compared to reversible resistance plays a major role in the total resistance for the tubular ceramic membrane. In contrast clean membrane resistance is the major contributor for the total resistance of the spiral polymeric membrane. Finally, the effectiveness of the filtration treatment was determined by evaluating the rejection coefficients for various pollution indices of the wastewater. Significant differences in the performance of the membrane types were observed which are likely to impact on the selection, operation and maintenance of the membrane system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report a facile method for controlling the morphology and porosity of porous siloxane membranes through manipulation of the water content of precursor microemulsions. The polymerizable microemulsion precursors consisted of a methacrylate-terminated siloxane macromonomer (MTSM) as the oil phase, nonionic surfactant (Teric G9A8), water, and cosurfactant (isopropanol). Photo-polymerization of the oil phase in the parent microemulsion solutions resulted in polymeric solids, and subsequent removal of the extractable components yielded porous PDMS membranes. The pre-cured parent microemulsion solutions and post-cured polymers were characterized by small angle X-ray scattering (SAXS) while the nanostructures of extracted porous polymer membranes were characterized by SAXS, scanning electron microscopy (SEM) and mercury porosimetry. The results indicated that nano- and micro-structures of the membranes could be modulated by the water content of the precursor microemulsions. Further, in situ photo-rheometry was used to follow the microemulsion polymerization process. The rate of polymerization and the mechanical properties of the resulting PDMS membranes also depend on the water content of precursor microemulsions. This study demonstrates a simple approach to the fabrication of a variety of novel porous PDMS membranes with controllable morphology and porosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced treatment of secondary wastewater generally has been achieved using polymeric microfiltration and ultrafiltration membranes. Newly developed ceramic membranes offer distinctive advantages over the currently employed membranes and were recently introduced for the purpose. This paper presents results of a pilot study designed to investigate the application of ceramic microfiltration (MF) and ultrafiltration (UF) membranes in the recovery of water from secondary wastewater. Synthetic wastewater similar to the quality of secondary treated wastewater was fed to ceramic MF and UF system in a cross-flow mode. The filtration experiments revealed that the flux recovery through tubular ceramic MF membrane was more sensitive to the variation in TMP compared with the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The results revealed that for ceramic UF membrane, the contribution to the total resistance of fouling was higher than the inherent of the clean membrane resistance. However, both the clean membrane resistance and the fouling resistance contribute equally in the case of MF membrane. Various wastewater indices were measured to evaluate the effectiveness of the filtration treatment. The ceramic UF membrane consistently met water quality in the permeate in terms of colour, turbidity, chemical oxygen demand and absorbance, suggesting that the permeate water could be made to be reused or recycled for suitable purposes. However, MF membrane appeared to be incompetent with respect to the removal of colour. The unified membrane fouling index (UMFI) was used to measure the fouling potential of both the membranes. The result showed that for UF membrane, the value of UMFI is one order of magnitude higher than MF membrane. The overall results suggest that there were significant differences in the performance of both the ceramic UF and MF membranes that are likely to impact on the operation and maintenance of the membrane system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC8,9PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC8,9PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization. MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC8,9PC bilayers, there seem to be a correlation between the degree of DC8,9PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning is used to produce fibers in the nanometer range by stretching a polymeric jet using electric fields of high magnitude. Chitosan is an abundant natural polymer that can be used to obtain biocompatible nanostructured membranes. The objectives of this work were to obtain nanostructured membranes based on blends of chitosan and polyoxyethylene (PEO), and evaluate their thermal and morphological properties, as well as their in vitro biocompatibility by agar diffusion cytotoxicity tests for three different cell lines. A nanostructured fibrous membrane with fiber diameters in the order of 200 nm was obtained, which presented a rough surface and thickness ranging from one to two millimeters. The results of the cytotoxicity tests evidenced that the chitosan/PEO membranes are non-toxic to the cells studied in this work. Further, the electrospinning technique was effective in obtaining nanostructured chitosan/PEO membranes, which showed biocompatibility according to in vitro preliminary tests using the cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tethered bilayer lipid membranes provide an efficient, stable and versatile platform for the investigation of integrated membrane proteins. However, the incorporation of large proteins, as well as of proteins with a large submembrane part is still a very critical issue and therefore, further optimisation of the system is necessary. The central element of a tBLM is a lipid bilayer. Its proximal leaflet is, at least to some extend, covalently attached to a solid support via a spacer group. The anchor lipid consists of three distinct parts, a lipid headgroup, a spacer group and an anchor. All parts together influence the final bilayer properties. In the frame of this work, the synthesis of new thiolipids for tBLMs on gold has been investigated. The aim was to obtain molecules with longer spacers in order to increase the submembrane space. The systems obtained have been characterized using SPR and EIS. The results obtained during this study are multiple. First, the synthesis of a previously synthesized architecture was successfully scaled up in an industrial lab using a new synthetic approach. The synthesis of large amounts is now feasible. Then, the synthesis of the new thiolipids was carried out taking into account the following requirements: the increase of the submembrane space by having longer ethyleneglycol spacers, the attachment of the molecules to a gold substrate via a thiol bond, and the tunability of the lateral mobility by changing the lipid headgroup. Three different synthetic strategies have been investigated. The polymeric approach did not prove to be successful, merely because of the broad molecular weight distribution. The synthesis of heterofunctionally protected oligoethyleneglycols allowed to obtain ethyleneglycol moieties with 6 and 8 units, but the tedious purification steps gave very low yields. Finally, the block by block synthesis using ethyleneglycol precursors proved to be an efficient and fast method to synthesize the target molecules. Indeed, these were obtained with very high yields, and the separation was very efficient. A whole family of new compounds was obtained, having 6, 8 and 14 ethyleneglycol units and with mono- or diphytanyl lipid headgroups. This new pathway is a very promising synthetic strategy that can be used further in the development of new compounds of the tether system. The formation of bilayers was investigated for the different thiolipids mainly by using EIS. The electrical properties of a bilayer define the quality of the membrane and allow the study of the functionality of proteins embedded in such a system. Despite multiple trials to improve the system using self assembly, Langmuir Blodgett transfer, and detergent mixed vesicles, the new polymer thiolipids did not show as high electrical properties as tBLMs reported in the literature. Nevertheless, it was possible to show that a bilayer could be obtained for the different spacer lengths. These bilayers could be formed using self assembly for the first monolayer, and two different methods for bilayer formation, namely vesicle fusion and solvent exchange. We could furthermore show functional incorporation of the ion carrier valinomycin: the selective transport of K+ ions could be demonstrated. For DPHL, it was even possible to show the functional incorporation of the ion channel gramicidin. The influence of the spacer length is translated into an increase of the spacer capacitance, which could correspond to an increase in the capacity of charge accumulation in the submembrane space. The different systems need to be further optimised to improve the electrical properties of the bilayer. Moreover, the incorporation of larger proteins, and proteins bearing submembrane parts needs to be investigated.