837 resultados para Poly(vinylidene fluoride-trifuoroethylene)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous because it is a nondestructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates at 80 degrees C, while the transition to P-PVDF was monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, along with the concomitant increase in the 839 cm-1 band characteristic of the P-phase. The alpha ->beta transition in our PVDF samples could be achieved even for the sample stretched to twice (2 X -stretched) the initial length and it did not depend on the stretching rate in the range between 2.0 and 7.0 mm/min. These conclusions were corroborated by differential scanning calorimetry (DSC) and X-ray diffraction experiments for PVDF samples processed under the same conditions as in the Raman scattering measurements. Poling with negative corona discharge was found to affect the a-PVDF morphology, improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, i.e., X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates and at 80 degrees C, the transition to beta-PVDF being monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, with the concomitant increase in the 839 cm(-1) band characteristic of the beta-phase. Poling with negative corona discharge was found to affect the alpha-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microactuator made from poly(vinylidene fluoride) (PVDF), a piezoelectric polymer, was fabricated to control the gas flow rate through a glass micronozzle. The actuator was formed by gluing together two PVDF sheets with opposite polarization directions. The sheets were covered with thin conducting films on one side, that were then used as electrodes to apply an electric field to move the valve. The actuator has a rectangular shape, 3 mm x 6 mm. The device was incorporated with a micronozzle fabricated by a powder blasting technique. Upon applying a DC voltage across the actuator electrodes, one sheet expands while the other contracts, generating an opening motion. A voltage of +300 V DC was used to open the device by moving the actuator 30 mu m, and a voltage of -200 V DC was used to close the device by moving the actuator 20 mu m lower than the relaxed position. Flow measurements were performed in a low-pressure vacuum system, maintaining the microvalve inlet pressure constant at 266 Pa. Tests carried out with the actuator in the open position and with a pressure ratio (inlet pressure divided by outlet pressure) of 0.5, indicated a flow rate of 0.36 sccm. In the closed position, and with a pressure ratio of 0.2, a flow rate of 0.32 sccm was measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conditions for processing and doping of blends of poly(o-alkoxyaniline)s and poly(vinylidene fluoride) were investigated. Flexible, free-standing and stretchable films of blends of various compositions were obtained by casting. A low percolation threshold was observed with the onset of conductivity at low polyalkoxyaniline contents (i.e. 5%). Interestingly, these blends displayed electrochromism with colour changes similar to those of the parent conducting polymer, as observed from cyclic voltammetry measurements. This behaviour is seen even for low contents of the conducting polymer, indicating that a continuous conducting pathway, which is capable of exchanging charge, is formed within the insulating matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports systematic results of corona poling measurements obtained on biaxially stretched polyvinylidene fluoride films charged in dry air. Charging was performed using the constant current corona triode. The dependence of the poling process on the sample thickness, charging current, and successive charging processes was investigated. Phase transitions from alpha to delta and to beta phases were observed when virgin samples were corona charged. The thermal pulse technique showed that the polarization profiles during charging can be made consistently almost uniform and that the ferroelectric reorientation can be associated with the rising plateau region displayed on potential buildup curves. (C) 1995 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of poly(o-methoxyaniline) - POMA - and poly(vinylidene fluoride) - PVDF - of various compositions were prepared from organic solvent solutions. Flexible, free-standing and stretchable films were obtained by casting, which were characterized by conductivity measurements, electron microscopy and differential scanning calorimetry. As expected, the blends conductivity increases with increasing contents of the conducting polymer. The onset of the conductivity at low contents of conducting polymer indicates a low percolation threshold for the blends. Despite the presence of the conductive host, the blends displayed the crystalline spherulitic morphology and the beta-phase characteristic of pure PVDF. This morphology appears to be destroyed, however, if the film is stretched by zone-drawing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is aimed at addressing the differences observed in film properties when poly(vinylidene fluoride-trifluorethylene) P(VDF-TrFE) films are fabricated using distinct methods. Samples were obtained either from casting a solution or by compression molding from a molten phase and characterized by differential scanning calorimetry (DSC). It is shown that the main differences between melt-solidified and cast films arise from the thermal treatment inherent in the former samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the effects from thermal treatment in poly(vinylidene fluoride), PVDF, obtained with differential scanning calorimetry (DSC) and dynamic thermal analysis (DMA) measurements. It is shown that in successive DMA measurements performed with one sample the α relaxation peak almost disappears while the γ′ peak appears. The α relaxation peak, at ∼100°C in DMA measurements, is attributed to the preferential orientation of chains in the amorphous phase while the γ′ relaxation peak, at ∼50°C, is related to the thermal treatment to which the sample was submitted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar α-phase to the polar β-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of α-PVDF were subjected to stretching under controlled rates and at 80°C, the transition to β-PVDF being monitored by the decrease in the Raman band at 794 cm-1 characteristic of the α-phase, with the concomitant increase in the 839 cm-1 band characteristic of the β-phase. Poling with negative corona discharge was found to affect the a-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the photoemission and electron energy loss spectra of crystalline poly(vinylidene-fluoride with trifluoroethylene: 70%: 30%), P(VDF–TrFE), films, fabricated by the Langmuir–Blodgett technique and annealed in vacuum, with in situ thermally evaporated films of poly(vinylidene-fluoride) (PVDF) in vacuum. The electronic structure and vibrational modes of the short chain PVDF films compare well with the crystalline P(VDF–TrFE) films indicating that vacuum annealed films prepared ex situ are free of significant surface contamination once vacuum annealed. The electronic structure for the short chain PVDF films exhibits, however, different temperature dependence than the crystalline P(VDF–TrFE) films. PACS: 68.47.Mn; 71.20.Rv; 63.22.+m; 73.22.-f

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.