940 resultados para Pollutant emissions
Resumo:
The selection of the energy source to power the transport sector is one of the main current concerns, not only relative with the energy paradigm but also due to the strong influence of road traffic in urban areas, which highly affects human exposure to air pollutants and human health and quality of life. Due to current important technical limitations of advanced energy sources for transportation purposes, biofuels are seen as an alternative way to power the world’s motor vehicles in a near-future, helping to reduce GHG emissions while at the same time stimulating rural development. Motivated by European strategies, Portugal, has been betting on biofuels to meet the Directive 2009/28/CE goals for road transports using biofuels, especially biodiesel, even though, there is unawareness regarding its impacts on air quality. In this sense, this work intends to clarify this issue by trying to answer the following question: can biodiesel use contribute to a better air quality over Portugal, particularly over urban areas? The first step of this work consisted on the characterization of the national biodiesel supply chain, which allows verifying that the biodiesel chain has problems of sustainability as it depends on raw materials importation, therefore not contributing to reduce the external energy dependence. Next, atmospheric pollutant emissions and air quality impacts associated to the biodiesel use on road transports were assessed, over Portugal and in particular over the Porto urban area, making use of the WRF-EURAD mesoscale numerical modelling system. For that, two emission scenarios were defined: a reference situation without biodiesel use and a scenario reflecting the use of a B20 fuel. Through the comparison of both scenarios, it was verified that the use of B20 fuels helps in controlling air pollution, promoting reductions on PM10, PM2.5, CO and total NMVOC concentrations. It was also verified that NO2 concentrations decrease over the mainland Portugal, but increase in the Porto urban area, as well as formaldehyde, acetaldehyde and acrolein emissions in the both case studies. However, the use of pure diesel is more injurious for human health due to its dominant VOC which have higher chronic hazard quotients and hazard indices when compared to B20.
Resumo:
The better understanding of the interactions between climate change and air quality is an emerging priority for research and policy. Climate change will bring changes in the climate system, which will affect the concentration and dispersion of air pollutants. The main objective of the current study is to assess the impacts of climate change on air quality in 2050 over Portugal and Porto urban area. First, an evaluation and characterization of the air quality over mainland Portugal was performed for the period between 2002 and 2012. The results show that NO2, PM10 and O3 are the critical pollutants in Portugal. Also, the influence of meteorology on O3, NO2 and PM10 levels was investigate in the national main urban areas (Porto and Lisboa) and was verified that O3 has a statistically significant relationship with temperature in most of the components. The results also indicate that emission control strategies are primary regulators for NO2 and PM10 levels. After, understanding the national air quality problems and the influence that meteorology had in the historical air quality levels, the air quality modelling system WRF-CAMx was tested and the required inputs for the simulations were prepared to fulfil the main goal of this work. For the required air quality modelling inputs, an Emission Projections under RCP scenarios (EmiPro-RCP) model was developed to assist the estimation of future emission inventories for GHG and common air pollutants. Also, the current emissions were estimated for Portugal with a higher detailed disaggregation to improve the performance of the air quality simulations. The air quality modelling system WRF/CAMx was tested and evaluated over Portugal and Porto urban area and the results point out that is an adequate tool for the analysis of air quality under climate change. For this purpose, regional simulations of air quality during historical period and future (2045-2050) were conducted with CAMx version 6.0 to evaluate the impacts of simulated future climate and anthropogenic emission projections on air quality over the study area. The climate and the emission projections were produced under the RCP8.5 scenario. The results from the simulations point out, that if the anthropogenic emissions keep the same in 2050, the concentrations of NO2, PM10 and O3 will increase in Portugal. When, besides the climate change effects, is consider the projected anthropogenic emissions the annual mean concentrations of NO2 decrease significantly in Portugal and Porto urban area, and on the contrary the annual mean PM10 concentrations increases in Portugal and decrease in Porto urban area. The O3 results are mainly caused by the reduction of ozone precursors, getting the higher reductions in urban areas and increases in the surrounding areas. All the analysis performed for both simulations for Porto urban area support that, for PM10 and O3, there will be an increase in the occurrence of extreme values, surpassing the annual legislated parameters and having more daily exceedances. This study constitutes an innovative scientific tool to help in future air quality management in order to mitigate future climate change impacts on air quality.
Resumo:
The paper compares the approach being taken to freight transport strategy and the specific policy measures being implemented in London and Paris. It highlights the serious consideration that has been given to freight transport by the Mayors of London and Paris in the last five years. These freight policy considerations are taking place against a background of growing levels of road freight activity, energy use and pollutant emissions in both cities. The key freight transport objectives being followed in London and Paris are similar and focus on improving the efficiency and reliability of freight transport while reducing the negative environmental impacts that it causes. The specific freight transport policy measures being followed show some differences in each city. However, attempts to address problems related to loading and unloading are taking place in both, albeit through different specific initiatives. These policy initiatives have important implications for companies concerned with urban logistics operations.
Resumo:
Tese de mestrado integrado em Engenharia da Energia e do Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4) and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies designed to address air pollution may impact climate and vice versa. We present calculations using a model coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally, allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset each other suggesting that air pollution policy has a relatively small net effect on the global mean surface temperature and sea level rise. However, our study does not account for the effects of air pollution policies on overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here. Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those addressed here, such as the regional patterns of cloudiness and precipitation.
Resumo:
Small gaseous combustion systems are being targeted by strict pollution legislation which will provide challenges to reduce the NOx being emitted. A novel type of gas burner has been successfully designed and developed which incorporates a Coanda ejector to promote recirculation of flue gas from the burner exit. This provides a combustion system which gives very low emissions of NOx and CO, whilst maintaining a high degree of flame stability over a range of air/fuel ratios and fuel flow rates. Recirculation of flue gas was obtained by manipulating the aerodynamics of the system, without the aid of external duct work or moving parts. The design of the burner allowed very low pollutant emissions near stoichiometric conditions, resulting in high temperatures of the exit gas. Potential applications of this type of burner are in small and intermediate furnaces where low NOx emissions are required. Moreover, very high-temperature applications, such as glass furnaces could benefit in both cost and pollutant emissions from such a burner.
Resumo:
Efforts in research and development of new technologies to reduce emission levels of pollutant gases in the atmosphere has intensified in the last decades. In this context, it can be highlighted the modern systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contributes to reduce the environmental impact. The purpose of this study was a comparative analysis of gas emissions from a automotive vehicle, operating with different fuels: natural gas, AEHC or gasoline. To execute the experimental tests, a flex vehicle was installed on a chassis dynamometer equipped with a gas analyzer and other complementary accessories according to the standard guidelines of emission and security procedures. Tests were performed according to NBR 6601 and NBR 7024, which define the urban and road driving cycle, respectively. Besides the analysis of exhaust gases in the discharge tube, before and after the catalyst, using the suction probe of the gas analyzer to simulate the vehicle in urban and road traffic, were performed tests of fuel characterization. Final results were conclusive in indicating leaded gasoline as the fuel which most contributed with pollutant emissions in atmosphere and the usual gasoline being the fuel which less contributed with pollutant emissions in atmosphere
Resumo:
This thesis intends to show the level of pollutant emissions in the State of Rio Grande do Norte, generated by the final consumption of energy in the many different sectors of the economy. This information was obtained from the energetic matrix and from the pollutant emissions of the State and the data was taken from the Balanço Energético Estadual and from the Sistema de Informações Energéticas da Olade. The result will permit to identify the energy and most polluting economic sectors in Rio Grande do Norte, contributing to energy planning, giving direction to the public policy development that aim at the change of the energy matrix of the State. Also with the objective of reducing pollutant emissions through rationalization, efficiency and energy substitution, which the main objective is to promote the economic development based on energy consumption of less harmful impact on the environment, contributing to establishment of sustainable development
Resumo:
The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.
Resumo:
Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.
Resumo:
Study of consumption rate and gaseous pollutant emission from engine tests simulating real work conditions, using spark point manually controlled and exhaust gas recirculation (EGR) in diverse proportion levels. The objective of this work is to re-examine the potential of the EGR conception, a well-known method of combustion control, employed together electronic fuel injection and three-way catalytic converter closed-loop control at a spark ignition engine, verifying the performance characteristics and technical availability of this conception to improve pollution control, fuel economy at low torque drive condition and to improve the engine exhaust components useful life. The pollutant emissions and consumption levels under operational conditions simulations were analysed and compared with the expected by concerning theory and real tests performed by EGR equipped engines by factory. Copyright © 2006 Society of Automotive Engineers, Inc.
Resumo:
Pós-graduação em Geologia Regional - IGCE