860 resultados para Polarization (Light)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experimental system designed to measure very low optical powers, of the order of a few picowatts, is presented. Its main aid is to detect the polarisation state of scattered light from a fluid flow, in different angular directions with respect to the longitudinal axis of the flow. A laser beam incident linearly polarized crosses the fluid flow orthogonally. The scattered light is detected by means of a photodetector situated behind a lineal polarizer whose orientation can be rotated. The outgoing electrical signal is amplified by means of a Mode-lockin amplifier and is digitally processed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homoepitaxial ZnO/(Zn,Mg)O multiple quantum wells (MQWs) grown with m- and r-plane orientations are used to demonstrate Schottky photodiodes sensitive to the polarization state of light. In both orientations, the spectral photoresponse of the MQW photodiodes shows a sharp excitonic absorption edge at 3.48 eV with a very low Urbach tail, allowing the observation of the absorption from the A, B and C excitonic transitions. The absorption edge energy is shifted by ∼30 and ∼15 meV for the m- and r-plane MQW photodiodes, respectively, in full agreement with the calculated polarization of the A, B, and C excitonic transitions. The best figures of merit are obtained for the m-plane photodiodes, which present a quantum efficiency of ∼11%, and a specific detectivity D* of ∼6.4 × 1010 cm Hz1/2/W. In these photodiodes, the absorption polarization sensitivity contrast between the two orthogonal in-plane axes yields a maximum value of (R⊥/R||)max ∼ 9.9 with a narrow bandwidth of ∼33 meV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use in the optical Schrodinger equation that describes the elastic scattering of heavy ions. Three different methods are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual pigments, the molecules in photoreceptors that initiate the process of vision, are inherently dichroic, differentially absorbing light according to its axis of polarization. Many animals have taken advantage of this property to build receptor systems capable of analyzing the polarization of incoming light, as polarized light is abundant in natural scenes (commonly being produced by scattering or reflection). Such polarization sensitivity has long been associated with behavioral tasks like orientation or navigation. However, only recently have we become aware that it can be incorporated into a high-level visual perception akin to color vision, permitting segmentation of a viewed scene into regions that differ in their polarization. By analogy to color vision, we call this capacity polarization vision. It is apparently used for tasks like those that color vision specializes in: contrast enhancement, camouflage breaking, object recognition, and signal detection and discrimination. While color is very useful in terrestrial or shallow-water environments, it is an unreliable cue deeper in water due to the spectral modification of light as it travels through water of various depths or of varying optical quality. Here, polarization vision has special utility and consequently has evolved in numerous marine species, as well as at least one terrestrial animal. In this review, we consider recent findings concerning polarization vision and its significance in biological signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concept of polarization entanglement for continuous variables is introduced. For this purpose the Stokes-parameter operators and the associated Poincare sphere, which describe the quantum-optical polarization properties of light, are defined and their basic properties are reviewed. The general features of the Stokes operators are illustrated by evaluation of their means and variances for a range of simple polarization states. Some of the examples show polarization squeezing, in which the variances of one or more Stokes parameters are smaller than the coherent-state value. The main object of the paper is the application of these concepts to bright squeezed light. It is shown that a light beam formed by interference of two orthogonally polarized quadrature-squeezed beams exhibits squeezing in some of the Stokes parameters. Passage of such a primary polarization-squeezed beam through suitable optical components generates a pair of polarization-entangled light beams with the nature of a two-mode squeezed state. Implementation of these schemes using the double-fiber Sagnac interferometer provides an efficient method for the generation of bright nonclassical polarization states. The important advantage of these nonclassical polarization states for quantum communication is the possibility of experimentally determining all of the relevant conjugate variables of both squeezed and entangled fields using only linear optical elements followed by direct detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic microcavity light-emitting diodes typically exhibit a blueshift of the emitting wavelength with increasing viewing angle. We have modeled the shift of the resonance wavelength for several metal mirrors. Eight metals (Al, Ag, Cr, Ti, Au, Ni, Pt, and Cu) have been considered as top or bottom mirrors, depending on their work functions. The model fully takes into account the dependence of the phase change that occurs on reflection on angle and wavelength for both s and p polarization, as well as on dispersion in the organic layers. Different contributions to the emission wavelength shift are discussed. The influence of the thickness of the bottom mirror and of the choice and thickness of the organic materials inside the cavity has been investigated. Based on the results obtained, guidelines for a choice of materials to reduce blueshift; are given. (C) 2002 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate nonclassical Stokes-operator variances in continuous-wave polarization-squeezed laser light generated from one and two optical parametric amplifiers. A general expression of how Stokes-operator variances decompose into two-mode quadrature operator variances is given. Stokes parameter variance spectra for four different polarization-squeezed states have been measured and compared with a coherent state. Our measurement results are visualized by three-dimensional Stokes-operator noise volumes mapped on the quantum Poincare sphere. We quantitatively compare the channel capacity of the different continuous-variable polarization states for communication protocols. It is shown that squeezed polarization states provide 33% higher channel capacities than the optimum coherent beam protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein–Podolsky–Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincaré sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, Ba0.8Sr0.2TiO3 (BST)/ITO structures were grown on glass substrate and laser assisted annealing (LAA) was performed to promote the crystallization of BST. Atomic force microscopy and X-ray diffraction studies confirm the crack free and polycrystalline perovskite phase of BST. White light controlled resistive switching (RS) effect in Au/BST/ITO device is investigated. The device displays the electroforming-free bipolar RS characteristics and are explained by the modulationof the width and height of barrier at the BST/ITO interface via ferroelectric polarization. Moreover, the RS effect is signifi- cantly improved under white light illumination compared to that in the dark. The enhanced RS and photovoltaic effects are explained by considering depolarization field and charge distribution at the interface. The devices exhibit stable retention characteristics with low currents (mA), which make them attractive for non volatile memory devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of [similar]40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2–3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustauschprozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theoretisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differentiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben. In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations– und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radiativ in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekombinationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestimmung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts– und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls. Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den 2p3/2–Zustand des nackten Ions und anschließendem Lyman–1–Zerfall (2p3/2 ! 1s1/2). Im Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–1 Zerfalls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und Experiment beim Alignment des 2p3/2–Zustands. Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakteristischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korrelationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfachsten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions und beim anschließenden Lyman–1–Übergang durchgeführt. Wie bereits erwähnt, hängt die Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombinationsphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls bzw. der einfallenden Elektronen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We elucidate the dependence of purity and entanglement of two-photon states generated by spontaneous parametric down-conversion on the parameters of the source, such as crystal length, pump beam divergence, frequency bandwidth, and detectors angular aperture. The effect of crystal anisotropy is taken into account. Numerical simulations are presented for two types of commonly used source configurations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Picrosirius-polarization method has been indicated as a selective histochemical stain for collagen detection in tissue sections. This method can also be of value for studying collagen degradation given that, under polarized light, collagen displays birefringence due to its molecular order. The aim of this study is to highlight this staining method as an additional instrument for a rapid and excellent confirmatory diagnosis of the presence of collagenolysis in connective tissue in the vaginal wall with vesical prolapse lesion, in tissue sections. Dramatic changes in collagen morphology were found in vaginal mucosa in vesical prolapse disorder: they were weakly stained by Sirius red and under polarized light appeared as thin, pale (weakly birefringent), greenish, and with fibers more scattered, while the histoarchitecture of the organ showed a disrupted appearance. Thus, in the present study, we showed in vaginal mucosa in the vesicle prolapse that corroded collagenous framework appears as fragmentary and irregularly separated collagenous structures, that are weakly birefringent, corresponding to a molecular disorganization of these fibers caused by collagenolysis. (C) 2006 Elsevier Ltd. All rights reserved.