926 resultados para Poços de petróleo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamento das zonas produtoras de óleos e/ou gás. Para que operações corretivas não se façam necessárias, é preciso adequar as pastas às condições de cada poço. Sistemas de pastas de cimento para poços HPHT requerem um bom controle de suas propriedades termo-mecânicas. Visto que a temperaturas superiores a 110 oC (230 oF) o cimento, após alcançar um valor máximo de resistência, inicia um processo de perda de resistência (retrogressão). Para prevenir esse efeito substitui-se parcialmente o cimento Portland por sílica com objetivo de incrementar a reação pozolânica. Esta reação modifica a trajetória do processo natural de hidratação do cimento, o gel de silicato de cálcio hidratado (C-S-H) se converte em várias outras fases com maior resistência. Polímeros também são adicionados para proporcionar maior flexibilidade e agir como barreira à propagação de trincas desenvolvidas sob tensão. O presente trabalho teve como objetivo estudar o comportamento do sistema cimento/sílica/polímero quando submetido às condições de alta temperatura e alta pressão. Foram formuladas pastas de cimento puro, pastas contendo 40 % BWOC de sílica flour e pastas com diferentes concentrações de poliuretana (5 % a 25 %) e 40 % BWOC de sílica flour. O peso específico das pastas foi fixado em 1,87 g/cm3 (15,6 lb/gal). Os resultados demonstram que as resistências da pasta contendo 40% de sílica e das com adição de polímero foram muito superiores a da pasta de cimento puro, não ocorrendo o efeito da retrogressão. As pastas com polímero apresentaram um crescente aumento da tenacidade com o aumento da concentração da mesma, sendo assim capaz de suportar as tensões. Além de se manterem estáveis termicamente acima de 180 ºC. O sistema também apresentou excelentes resultados de filtrado, reologia, água livre, estabilidade e permeabilidade. Sendo assim, o mesmo mostrou ser aplicável a poços HPHT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The several existing methods for oil artificial lifting and the variety of automation equipment for these methods many times lead the supervisory systems to be dedicated to a unique method and/or to a unique manufacturer. To avoid this problem, it has been developed the supervisory system named SISAL, conceived to supervise wells with different lifting methods and different automation equipments. The SISAL system is working in several Brazilian states but, nowadays, it is only supervising rod pump-based wells. The objective of this work is the development of a supervision module to the plunger lift artificial lift method. The module will have the same characteristics of working with automation hardware of many manufacturers. The module will be integrated to the SISAL system, incorporating the capacity to supervise the plunger lift artificial lift method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiphase flow occurrence in the oil and gas industry is common throughout fluid path, production, transportation and refining. The multiphase flow is defined as flow simultaneously composed of two or more phases with different properties and immiscible. An important computational tool for the design, planning and optimization production systems is multiphase flow simulation in pipelines and porous media, usually made by multiphase flow commercial simulators. The main purpose of the multiphase flow simulators is predicting pressure and temperature at any point at the production system. This work proposes the development of a multiphase flow simulator able to predict the dynamic pressure and temperature gradient in vertical, directional and horizontal wells. The prediction of pressure and temperature profiles was made by numerical integration using marching algorithm with empirical correlations and mechanistic model to predict pressure gradient. The development of this tool involved set of routines implemented through software programming Embarcadero C++ Builder® 2010 version, which allowed the creation of executable file compatible with Microsoft Windows® operating systems. The simulator validation was conduct by computational experiments and comparison the results with the PIPESIM®. In general, the developed simulator achieved excellent results compared with those obtained by PIPESIM and can be used as a tool to assist production systems development

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master´s thesis presents a reliability study conducted among onshore oil fields in the Potiguar Basin (RN/CE) of Petrobras company, Brazil. The main study objective was to build a regression model to predict the risk of failures that impede production wells to function properly using the information of explanatory variables related to wells such as the elevation method, the amount of water produced in the well (BSW), the ratio gas-oil (RGO), the depth of the production bomb, the operational unit of the oil field, among others. The study was based on a retrospective sample of 603 oil columns from all that were functioning between 2000 and 2006. Statistical hypothesis tests under a Weibull regression model fitted to the failure data allowed the selection of some significant predictors in the set considered to explain the first failure time in the wells

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this dissertation is to develop a Multi Criteria Decision Aid Model to be used in Oils and Gas perforation rigs contracts choices. The developed model should permit the utilization of multiples criterions, covering problems that exist with models that mainly use the price of the contracts as its decision criterion. The AHP has been chosen because its large utilization, not only academic, but in many other areas, its simplicity of use and flexibility, and also fill all the requirements necessary to complete the task. The development of the model was conducted by interviews and surveys with one specialist in this specific area, who also acts as the main actor on the decision process. The final model consists in six criterions: Costs, mobility, automation, technical support, how fast the service could be concluded and availability to start the operations. Three rigs were chosen as possible solutions for the problem. The results reached by the utilizations of the model suggests that the utilization of AHP as a decision support system in this kind of situation is possible, allowing a simplifications of the problem, and also it s a useful tool to improve every one involved on the process s knowledge about the problem subject, and its possible solutions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amongst the results of the AutPoc Project - Automation of Wells, established between UFRN and Petrobras with the support of the CNPq, FINEP, CTPETRO, FUNPEC, was developed a simulator for equipped wells of oil with the method of rise for continuous gas-lift. The gas-lift is a method of rise sufficiently used in production offshore (sea production), and its basic concept is to inject gas in the deep one of the producing well of oil transform it less dense in order to facilitate its displacement since the reservoir until the surface. Based in the use of tables and equations that condense the biggest number of information on characteristics of the reservoir, the well and the valves of gas injection, it is allowed, through successive interpolations, to simulate representative curves of the physical behavior of the existing characteristic variable. With a simulator that approaches a computer of real the physical conditions of an oil well is possible to analyze peculiar behaviors with very bigger speeds, since the constants of time of the system in question well are raised e, moreover, to optimize costs with assays in field. The simulator presents great versatility, with prominance the analysis of the influence of parameters, as the static pressure, relation gas-liquid, pressure in the head of the well, BSW (Relation Basic Sediments and Water) in curves of request in deep of the well and the attainment of the curve of performance of the well where it can be simulated rules of control and otimization. In moving the rules of control, the simulator allows the use in two ways of simulation: the application of the control saw software simulated enclosed in the proper simulator, as well as the use of external controllers. This implies that the simulator can be used as tool of validation of control algorithms. Through the potentialities above cited, of course one another powerful application for the simulator appears: the didactic use of the tool. It will be possible to use it in formation courses and recycling of engineers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a computer simulator for sucker rod pumped vertical wells. The simulator is able to represent the dynamic behavior of the systems and the computation of several important parameters, allowing the easy visualization of several pertinent phenomena. The use of the simulator allows the execution of several tests at lower costs and shorter times, than real wells experiments. The simulation uses a model based on the dynamic behavior of the rod string. This dynamic model is represented by a second order partial differencial equation. Through this model, several common field situations can be verified. Moreover, the simulation includes 3D animations, facilitating the physical understanding of the process, due to a better visual interpretation of the phenomena. Another important characteristic is the emulation of the main sensors used in sucker rod pumping automation. The emulation of the sensors is implemented through a microcontrolled interface between the simulator and the industrial controllers. By means of this interface, the controllers interpret the simulator as a real well. A "fault module" was included in the simulator. This module incorporates the six more important faults found in sucker rod pumping. Therefore, the analysis and verification of these problems through the simulator, allows the user to identify such situations that otherwise could be observed only in the field. The simulation of these faults receives a different treatment due to the different boundary conditions imposed to the numeric solution of the problem. Possible applications of the simulator are: the design and analysis of wells, training of technicians and engineers, execution of tests in controllers and supervisory systems, and validation of control algorithms