995 resultados para Plate bending


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments to fit the so called Free Formulation into a variational framework have suggested the possibility of introducing a new category of error estimates for finite element computations. Such error estimates are based on differences between certain multifield functionals, which give the same value for the true solution. In the present paper the formulation of some estimates of this kind is introduced for elasticity and plate bending problems, and several examples of their performance are discussed. The observed numerical behavior of the new accuracy measures seems to be acceptable from an engineering point of view. However, further numerical experimentation is still needed to establish practical tolerance levels for real problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The governing differential equation of linear, elastic, thin, circular plate of uniform thickness, subjected to uniformly distributed load and resting on Winkler-Pasternak type foundation is solved using ``Chebyshev Polynomials''. Analysis is carried out using Lenczos' technique, both for simply supported and clamped plates. Numerical results thus obtained by perturbing the differential equation for plates without foundation are compared and are found to be in good agreement with the available results. The effect of foundation on central deflection of the plate is shown in the form of graphs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin, piezoelectric circular plates are frequently used as active components in transducer and smart materials applications. This paper reports on the exact, explicit solution for the transient motion of a piezoelectric circular plate, built-in or simply supported on the edge and electrically grounded over the entire surface. Expressed by elementary Bessel functions and obtained via exact inverse Laplace transforms, the solution enables the efficient calculation of accurate system parameters. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone contours, and depending on the material of the plate, different outcomes have been reported along with postoperative complications. A comparative analysis of Stainless Steel 316L and Ti-6Al-4V alloys was carried to estimate the safe bending limit for appropriate fits. The results from the ANSYS FEA simulations were validated with experiments based on ASTM F382-99. It is found that SS316L is better suited for large deformations (up to 16˚ in proximal tip and 7.5˚ in distal end) and Ti for smaller deformation contours (up to 3˚ in proximal tip and 1.8˚ in distal end). The results of this study have profound implications for the choice of plates based on preliminary radiographical fracture examinations to ensure better fixation and higher rates of union of distal tibial fractures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.