971 resultados para Plants, Effect of ethylene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the concentration of a nucleating agent (NA), namely 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS), on the gamma phase content in a propylene/ethylene copolymer was investigated by means of Differential Scanning Calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Small- Angle X-ray Scatter (SAXS) and Polarized Optical Microscopy (POM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three Polypropylene/Poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys produced by a two-stage slurry/gas polymerization had different ethylene contents and mechanical properties, which were achieved by controlling the copolymerization time. The three alloys were fractionated into five fractions via temperature rising dissolution fractionation (TRDF), respectively. The chain structures of the whole samples and their fractions were analyzed using high-temperature gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), C-13 nuclear magnetic resonance (C-13 NMR), and differential scanning calorimetry (DSC) techniques. These three in-reactor alloys mainly contained four portions: ethylenepropylene random copolymer (EPR), ethylene-propylene (EP) segmented and block copolymers, and propylene homopolymer. The increased copolymerization time caused the increased ethylene content of the sample. The weight percent of EPR, EP segmented and block copolymer also became higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of two kinds of commercial poly(propylene-co-ethylene)s (PPE1, PPE2) with similar average molecular weight and molecular weight distribution, isotacticity and copolymerized ethylene unit content and their fractions was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and polarized optical microscopy (POM) techniques. The results indicate that the PPE1 isothermally crystallized films possess thicker and less cross-hatched lamellar structure than those of the PPE2. As for the fractionated samples, the thin films of low temperature (less than or equal to 90 degreesC) fractions (PPE1-80, PPE2-80) of both PPE1 and PPE2 exhibit similar crystallization behavior, while for the high temperature ( greater than or equal to 95 degreesC) fractions (PPE1-108, PPE2-108), the crystalline morphology has marked differences. Compared with PPE2-108, the PPE1-108 isothermally crystallized thin films possess thicker lamellae and less crosshatched lamellar structure, while for the fibrous crystal number, the former is less than that of the latter. The main reason to create the crystallization behavior differences between the two PPEs and their fractions is due to the effect of molecular chain structure, i.e. the different distribution of copolymerized ethylene unit in polypropylene chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the gamma-form crystal on the thermal fractionation of a commercial poly(propylene-co-ethylene) (PPE) has been studied by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) techniques. Two thermal fractionation techniques, stepwise isothermal crystallization (SIC) and successive self-nucleation and annealing (SSA), have been used to characterize the molecular heterogeneity of the PPE. The results indicate that the SSA technique possesses a stronger fractionation ability than that of the SIC technique. The heating scan of the SSA fractionated sample exhibits 12 endothermic peaks, whereas the scan of the SIC fractionated sample only shows eight melting peaks. The WAXD observations of the fractionated PPE samples prove that the content of the gamma-form crystals formed during the thermal treatment of the SIC technique is much higher than that of the SSA treatment. The former is 57.4%, whereas the later is 12.6%. The effect of they-form crystals on thermal fractionation ability is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The branched copolymers prepared from ethylene and alpha-olefins using rac-Et(Ind)(2)ZrCl2/MMAO catalyst system were studied. Both the absolute molecular weight ((M) over bar (W)) and the molecular size (radius of glyration, R-g) of the polymers eluting from gel permeation chromatography (GPC) columns were obtained simultaneously via a high temperature GPC coupled with a two-angle laser light scattering (TALLS) detector. The branched structures and performances of the copolymers display approximate molecular weight and molecular sizes were investigated. Wide angle X-ray diffraction analyses indicate that 16-carbon side branch could co-crystallize effectively with backbone chain at low alpha-olefin incorporation. The melt behaviors of the copolymers were studied by dynamic rheological measurements. Both branch length and comonomer content affect considerably the loss modulus, storage modulus and complex viscosity of the copolymers. The relationship between the dynamic-mechanical behavior and the comonomer content of the copolymers was also examined by dynamic-mechanical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology and mechanical behaviour of phenolphthalein poly(ether ether ketone) (PEK-C)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends has been investigated. A poly(ethylene oxide)-b-polystyrene-b-poly(ethylene oxide) (PEO-PS-PEO) triblock copolymer was used as compatibilizer. It was found that PEO-PS-PEO has a compatibilizing effect on the PEK-C/PPO blends. The addition of PEO-PS-PEO to the blends greatly improves phase dispersion and interfacial interfacial adhesion and also enhances the ultimate tensile strength and Young's modulus at compositions ranging from 30 to 70% PEK-C. However, all the values of the ultimate tensile strength within the whole composition range are lower than those expected by simple additivity, probably owing to the poor mechanical properties of PEO-PS-PEO copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective oxidation of ethylene to acetic acid was investigated on Pd-acid/support catalyst system. The catalytic activity is influenced strongly by the acidity of the catalyst. The stronger the catalyst acidity the higher the catalytic activity. The nature of the support also influences the activity of the catalyst substantially. The catalyst has highest activity when it exhibits highest acidity on silica.