934 resultados para Plant-tissue culture
Resumo:
Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.
Resumo:
Plants were regenerated from callus induced from leaf disc explants of a tomato F, hybrid heterozygous for three marker loci (a), without anthocyanin (aw), and hairless (hl). Regenerants were studied for somaclonal variation at the phenotypic level by scoring for variation in the marker loci, and at the DNA level by probing geomic DNA blots with a chlorophyll a/b binding protein (Cab-3C) cDNA sequence. While no variation was observed at the phenotypic level in over 950 somaclones studied, DNA polymorphism for the Cab locus could be detected in two out of 17 somaclones tested. Tissue culture induced variation at the phenotypic level for specific loci is very low (less than 0.001 for a, awor hl) but DNA sequence changes are induced at much greater frequency (- 0.1 for a multicopy gene family such as Cab).
Resumo:
The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.
Resumo:
Escherichia fergusonii has been associated with a wide variety of intestinal and extra-intestinal infections in both humans and animals but, despite strong circumstantial evidence, the degree to which the organism is responsible for the pathologies identified remains uncertain. Thirty isolates of E fergusonii collected between 2003 and 2004 were screened using an Escherichia coli virulence gene array to test for the presence of homologous virulence genes in E. fergusonii. The iss (increased serum survival) gene was present in 13/30 (43%) of the test strains and the prfB (P-related fimbriae regulatory) and ireA (siderophore receptor IreA) genes were also detected jointly in 3/30 (10%) strains. No known virulence genes were detected in 14/30 (47%) of strains. Following confirmatory PCR and sequence analysis, the E. fergusonii prfB, iss and ireA genes shared a high degree of sequence similarity to their counterparts in E. coli, and a particular resemblance was noted with the E. coli strain APEC O1 pathogenicity island. In tissue culture adherence assays, nine E. fergusonii isolates associated with HEp-2 cells with a 'localised adherence' or 'diffuse adherence' phenotype, and they proved to be moderately invasive. The E fergusonii isolates in this study possess both some phenotypic and genotypic features linked to known pathotypes of E coli, and support existing evidence that strains of E fergusonii may act as an opportunistic pathogens, although their specific virulence factors may need to be explored. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
To investigate the role of fimbriae and flagella in the pathogenesis of avian colibacillosis, isogenic insertionally inactivated mutant strains of Escherichia coil O78:K80 strain EC34195 defective in the elaboration of type-1 and curli fimbriae and flagella were constructed by allelic exchange, Single and multiple non-fimbriate and non-flagellate mutant strains were compared to the wild-type in vitro in adherence assays with a HEp-2 cell line, a mucus-secreting cell line HT2916E, a non-mucus-secreting cell line HT2919A, tracheal explant and proximal gut explant, Mutant strains defective in the elaboration of type-1 fimbriae were significantly less adherent - in the order of 90% reduction - than the wild-type strain in all assays. Mutant strains defective in the elaboration of flagella were generally as adherent as the wild-type strain except when assayed with the mucus-secreting cell line HT2916E, for which a significant reduction of adherence - of the order of 90% - compared with the wild-type strain was observed. Mutant strains defective for the elaboration of curb fimbriae adhered as well as the wild-type strain in all assays, except when assayed in tests with gut explant tissue for which a significant reduction of adherence - of the order of 80% - compared with the wild-type strain was observed, Adherence to explants was to epithelial, not serous, surfaces and was 10-fold greater to tracheal than to gut explants, Together, these data support the hypothesis that type-1 fimbriae are significant factors in adherence, aided by flagella for penetration of mucus and curli fimbriae for adherence to the gut.
Resumo:
Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.
Resumo:
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.
Resumo:
Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.
Resumo:
The effect of the concentration of sucrose solutions on the cellular structure of potato tissue in equilibrium at 27 degreesC was Studied. Two different methods of investigation were used to determine the volume of the different phases composing the cellular tissue of the potato when in equilibrium with the solutions. one based on data of the concentration itself and the overall volume of 2 mm slices after 48 h at equilibrium, and the other on microscopic images of cells in thin slices of fresh tissue stained with neutral red after an hour in equilibrium to show protoplasts, vacuoles and plasmolysis spaces. The results of these methods were compared with those obtained by a predictive thermodynamic approach considering the semipermeability of cell membranes. Phase volume data obtained from microscopic analysis were more similar to what was predicted by the theoretical model than those obtained by means of composition measurement. where the long equilibrium time apparently led to the loss of semi permeability of the cell membranes, since total volumes calculated without consideration of the cell membranes were similar to those measured. This suggests that the length of time of osmotic dehydration brings about a change in cell structure and the consequent involvement of a different mechanism in mass transfer. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Mentha piperita L. is an aromatic and medicinal species of the family Lamiaceae, known as mint or peppermint, and its leaves and branches produce essential oil rich in menthol. This study aimed to evaluate physiological indexes, macro- and micronutrients inthe shootsand essential oil of Mentha piperita L. grown in nutrient solution number 2 of Hoagland and Arnon (1950) with different N, P, K and Mg levels. Shoot length, dry mass of the different organs, total dry mass, leaf area, essential oil yield and composition, and macronutrient (N, P, K, Mg, Ca, S) and micronutrient (Mn, Cu, Fe, Zn) contents in the shoot were evaluated. Plants treated with 65%N/50%P/25%K/100%Mg had a tendency towards longer shoot, greaterroot and leaf blade dry masses, higher essential oil yield, higher menthol levels and lower menthone levels. The results showed that Mentha can be grown in nutrient solution by reducing 65% N, 50% P, 25% K and 100% Mg. This solution had better development compared to the other tested treatments. Therefore,we recommendMentha piperita L. to be grown with such nutrient levels.