972 resultados para Plant-soil interaction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Accumulating evidence indicates that plant resistance against above-ground herbivores can be affected by the presence of arbuscular mycorrhizal fungi (AMF) in association with the host plant. Little is known, however, about how AMF composition can influence herbivore choice to feed on a particular plant. 2. Unravelling the preference-performance hypothesis in a multitrophic context is needed to expand our knowledge of complex multitrophic interactions in natural systems. If given mycorrhizal fungal genotypes increase attractiveness for a herbivore (reduced plant resistance), then the benefits of increased unpalatability provided by the mycorrhizal fungi (increased plant resistance) might be outweighed by the increased herbivore recruitment. 3. This was addressed by designing three experiments to test the effects of different AMF genotypes, inoculated either alone or in combination, to measure intraspecific AMF effects on plant resistance and insect herbivore preference. Using strawberry (Fragaria vesca L.) plants that were colonised by eight different combinations of Rhizophagus irregularis isolates, we measured effects on plant growth, insect growth and survival, as well as feeding preferences of a generalist herbivore caterpillar (Spodoptera littoralis Boisduval). 4. Overall, it was found that: (i) AMF influenced plant resistance in an AMF genotype-specific manner; (ii) some AMF inoculations decreased insect performance; (iii) insects preferentially chose to feed more on leaves originating from non-mycorrhizal plants; but also that (iv) in a whole plant bioassay, insects preferentially chose the biggest plant, regardless of their mycorrhizal status. 5. Therefore, AMF-mediated trade-offs between growth and resistance against herbivores have been shown. Such trade-offs, particularly driven by plant attractiveness to herbivores, buffer the positive effects of the mycorrhizal symbiosis on enhanced plant growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecological interactions are complex networks, but have typically been studied in a pairwise fashion. Examining how third-party species can modify the outcome of pairwise interactions may allow us to better predict their outcomes in realistic systems. For instance, arbuscular mycorrhizal fungi (AMF) can affect plant interactions with other organisms, including below-ground herbivores, but the mechanisms underlying these effects remain unclear. Here, we use a comparative, phylogenetically controlled approach to test the relative importance of mycorrhizal colonization and plant chemical defences (cardenolides) in predicting plant survival and the abundance of a generalist below-ground herbivore across 14 species of milkweeds (Asclepias spp.). Plants were inoculated with a mixture of four generalist AMF species or left uninoculated. After 1month, larvae of Bradysia sp. (Diptera: Sciaridae), a generalist below-ground herbivore, colonized plant roots. We performed phylogenetically controlled analyses to assess the influence of AMF colonization and toxic cardenolides on plant growth, mortality and infestation by fungus gnats. Overall, plants inoculated with AMF exhibited greater survival than did uninoculated plants. Additionally, surviving inoculated plants had lower numbers of larvae in their roots and fewer non-AM fungi than surviving uninoculated plants. In phylogenetic controlled regressions, gnat density in roots was better predicted by the extent of root colonized by AMF than by root cardenolide concentration. Taken as a whole, AMF modify the effect of below-ground herbivores on plants in a species-specific manner, independent of changes in chemical defence. This study adds to the growing body of literature demonstrating that mycorrhizal fungi may improve plant fitness by conferring protection against antagonists, rather than growth benefits. In addition, we advocate using comparative analyses to disentangle the roles of shared history and ecology in shaping trait expression and to better predict the outcomes of complex multitrophic interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summer droughts are predicted to increase in severity and frequency in the United Kingdom, due to climate change. Few studies have addressed the impacts of drought on interactions between species, and the majority have focussed on increases in CO2 concentration and changes in temperature. Here, the effect of experimental summer drought on the strength of the plant-mediated interaction between leaf-mining Stephensia brunnichella larvae and root-chewing Agriotes larvae was investigated. Agriotes larvae reduced the abundance and performance of S. brunnichella feeding on a mutual host plant, Clinopodium vulgare, as well as the rate of parasitism of the leaf-miner. The interaction did not, however, occur on plants subjected to a severe drought treatment, which were reduced in size. Changes to summer rainfall, due to climate change, may therefore reduce the occurrence of plant-mediated interactions between insect herbivores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Xylella fastidiosa causes citrus variegated chlorosis (CVC). Information generated from the X. fastidiosa genome project is being used to study the underlying mechanisms responsible for pathogenicity. However, the lack of an experimental host other than citrus to study plant-X. fastidiosa interaction has been an obstacle to accelerated progress in this area. We present here results of three experiments that demonstrated that tobacco could be an important experimental host for X. fastidiosa. All tobacco plants inoculated with a citrus strain of X. fastidiosa expressed unequivocal symptoms, consisting of orange leaf lesions, approximately 2 months after injection of the pathogen. CVC symptoms were observed in citrus 3 to 6 months after inoculation. The pathogen was readily detected in symptomatic tobacco plants by polymerase chain reaction (PCR) and phase contrast microscopy. In addition, X. fastidiosa was reisolated on agar plates in 4 of 10 plants. Scanning electron microscopy analysis of cross sections of stems and petioles revealed the presence of rod shaped bacteria restricted to the xylem of inoculated plants. The cell size was within the limit typical of X. fastidiosa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores - secondary dispersal and/or increased germination - varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and aimsThe protocarnivorous plant Paepalanthus bromelioides (Eriocaulaceae) is similar to bromeliads in that this plant has a rosette-like structure that allows rainwater to accumulate in leaf axils (i.e. phytotelmata). Although the rosettes of P. bromelioides are commonly inhabited by predators (e.g. spiders), their roots are wrapped by a cylindrical termite mound that grows beneath the rosette. In this study it is predicted that these plants can derive nutrients from recycling processes carried out by termites and from predation events that take place inside the rosette. It is also predicted that bacteria living in phytotelmata can accelerate nutrient cycling derived from predators.MethodsThe predictions were tested by surveying plants and animals, and also by performing field experiments in rocky fields from Serra do Cipó, Brazil, using natural abundance and enriched isotopes of 15N. Laboratory bioassays were also conducted to test proteolytic activities of bacteria from P. bromelioides rosettes.Key ResultsAnalyses of 15N in natural nitrogen abundances showed that the isotopic signature of P. bromelioides is similar to that of carnivorous plants and higher than that of non-carnivorous plants in the study area. Linear mixing models showed that predatory activities on the rosettes (i.e. spider faeces and prey carcass) resulted in overall nitrogen contributions of 26·5 % (a top-down flux). Although nitrogen flux was not detected from termites to plants via decomposition of labelled cardboard, the data on 15N in natural nitrogen abundance indicated that 67 % of nitrogen from P. bromelioides is derived from termites (a bottom-up flux). Bacteria did not affect nutrient cycling or nitrogen uptake from prey carcasses and spider faeces.ConclusionsThe results suggest that P. bromelioides derive nitrogen from associated predators and termites, despite differences in nitrogen cycling velocities, which seem to have been higher in nitrogen derived from predators (leaves) than from termites (roots). This is the first study that demonstrates partitioning effects from multiple partners in a digestion-based mutualism. Despite most of the nitrogen being absorbed through their roots (via termites), P. bromelioides has all the attributes necessary to be considered as a carnivorous plant in the context of digestive mutualism. © 2012 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A diverse set of phage lineages is associated with the bacterial plant-pathogen genomes sequenced to date. Analysis of 37 genomes revealed 5,169 potential genes (approximately 4.3 Mbp) of phage origin, and at least 50 had no function assigned or are nonessential to phage biology. Some phytopathogens have transcriptionally active prophage genes under conditions that mimic plant infection, suggesting an association between plant disease and prophage transcriptional modulation. The role of prophages within genomes for cell biology varies. For pathogens such as Pectobacterium, Pseudomonas, Ralstonia, and Streptomyces, involvement of prophage in disease symptoms has been demonstrated. In Xylella and Xanthomonas, prophage activity is associated with genome rearrangements and strain differentiation. For other pathogens, prophage roles are yet to be established. This review integrates available information in a unique interface (http://propnav.esalq.usp.br) that may be assessed to improve research in prophage biology and its association with genome evolution and pathogenicity. © Copyright ©2013 by Annual Reviews. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.