953 resultados para Plant breeding.
Resumo:
Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.
Resumo:
School of Legal Studies, Cochin University of Science and Technology
Resumo:
This paper explores concentration levels in the ownership of intellectual property rights over plant varieties worldwide. An analysis of data for 30 UPOV member-countries shows a high degree of concentration in the ownership of plant variety rights for six major crops at the national level in the developed world. Much of this concentration has arisen owing to the rapid consolidation of the seed industry through mergers and acquisitions, especially in the 1990s. A high degree of concentration in the ownership of plant variety rights, in combination with recent efforts to strengthen plant variety protection regimes, is likely to have significant effects on the prospects for future innovation in plant breeding and the distribution of market power between companies. For developing countries, concentration in intellectual property right ownership may have important implications for the structure of domestic seed industries and access to protected varieties and associated plant breeding technologies. These implications for developing countries are likely to become apparent in the context of the rapid spread of plant variety protection and access legislation, emerging changes in the international exchange regime for plant material and liberalised investment policies permitting foreign investment in the seeds sector.
Resumo:
This paper explores concentration levels in the ownership of intellectual property rights over plant varieties worldwide. An analysis of data for 30 UPOV member-countries shows a high degree of concentration in the ownership of plant variety rights for six major crops at the national level in the developed world. Much of this concentration has arisen owing to the rapid consolidation of the seed industry through mergers and acquisitions, especially in the 1990s. A high degree of concentration in the ownership of plant variety rights, in combination with recent efforts to strengthen plant variety protection regimes, is likely to have significant effects on the prospects for future innovation in plant breeding and the distribution of market power between companies. For developing countries, concentration in intellectual property right ownership may have important implications for the structure of domestic seed industries and access to protected varieties and associated plant breeding technologies. These implications for developing countries are likely to become apparent in the context of the rapid spread of plant variety protection and access legislation, emerging changes in the international exchange regime for plant material and liberalised investment policies permitting foreign investment in the seeds sector. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Many developing countries are currently engaged in designing and implementing plant variety protection systems. Encouraging private investment in plant breeding is the key rationale for extending intellectual property rights to plant varieties. However, the design of plant variety protection systems in developing countries has been dominated by concerns regarding the inequities of a plant variety protection system, especially the imbalance in the reward structure between plant breeders and farmers. The private seed industry, a key stakeholder in plant variety protection, appears to be playing only a peripheral role in the design of the intellectual property rights regime. This paper explores the potential response of the private seed industry in India to plant variety protection legislation based on a survey of major plant breeding companies. The survey finds that the private seed industry in India is generally unenthusiastic about the legislation and plant variety protection is likely to have only a very limited impact on their research profile and expenditures on plant breeding. Measures designed to curb the 'excessive' profits of breeders, farmers' rights provisions and poor prospects for enforcement of rights are seen to be seriously diluting breeders' rights, leaving few incentives for innovation. If the fundamental objective of plant variety protection is to stimulate private investment in plant breeding, then developing countries need to seriously address the question of improving appropriability of returns from investment.
Resumo:
Under the Agreement on Trade-Related Aspects of Intellectual Property Rights, all member-countries of the World Trade Organization are required to provide an "effective" system of plant variety protection within a specific time frame. In many developing countries, this has led to a divisive debate about the fundamental desirability of extending intellectual property rights to agriculture. Empirical studies on the economic impacts of plant variety protection, especially its ability to generate large private sector investments in plant breeding and to facilitate the transfer of technology, have been very limited. This paper examines two aspects of the international experience of plant variety protection: (a) the relationship between legislation, research, and development expenditures and plant variety protection grants, i.e., the innovation effect and (b) the role of plant variety protection in facilitating the flow of varieties across countries, i.e., the transferability effect.
Resumo:
The horticultural industry was instrumental in the early development and exploitation of genetic techniques over a century ago. This review will describe recent advances in a range of in vitro methods and their application to plant breeding, with especial emphasis on horticultural crops. These methods include improvements in the efficiency of haploid breeding techniques in many fruit and vegetable species using either microspore-derived or ovule-derived plants. Significant molecular information is now available to supplement these essentially empirical approaches and this may enable the more predictable application of these technologies in previously intransigent crops. Similarly there are now improved techniques for isolation of somatic hybrids, by application of either in vitro fertilisation or the culture of excised ovules from interspecific crosses. In addition to examples taken from the traditional scientific literature, emphasis will also be given to the use of patent databases as a valuable source of information on recent novel technologies developed in the commercial world.
Resumo:
The purpose of this study was to verify the breeding potential of the maize composite Isanao VF1 in the second growing season. One hundred and fifty half-sib progenies were evaluated of spacing of 0.45 m, densities of 57,778 and 80,000 plants ha(-1), in a randomized block design with three replications. Gains of 16.0 and 19.2% were estimated for grain Yield, H. I and 10.5% for prolificacy and 12.3 and 12.9% for ear height, respectively, at 57,778 and 80,000 plants ha(-1). The heritabilities for plant height, ear height and grain yield were 65.2 and 61.3%, 64.3 and 66.9% and 53.5 and 63.3%, respectively, confirming the potential for breeding at both densities. The absence of progeny by density interaction indicates that no further selection programs are necessary. The occurrence of segregation for modifier genes for height suggests stabilizing selection based on ear height.
Resumo:
The present paper deals with estimation of variance components, prediction of breeding values and selection in a population of rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell.-Arg.] from Rio Branco, State of Acre, Brazil. The REML/BLUP (restricted maximum likelihood/best linear unbiased prediction) procedure was applied. For this purpose, 37 rubber tree families were obtained and assessed in a randomized complete block design, with three unbalanced replications. The field trial was carried out at the Experimental Station of UNESP, located in Selvíria, State of Mato Grosso do Sul, Brazil. The quantitative traits evaluated were: girth (G), bark thickness (BT), number of latex vessel rings (NR), and plant height (PH). Given the unbalanced condition of the progeny test, the REML/BLUP procedure was used for estimation. The narrow-sense individual heritability estimates were 0.43 for G, 0.18 for BT, 0.01 for NR, and 0.51 for PH. Two selection strategies were adopted: one short-term (ST - selection intensity of 8.85%) and the other long-term (LT - selection intensity of 26.56%). For G, the estimated genetic gains in relation to the population average were 26.80% and 17.94%, respectively, according to the ST and LT strategies. The effective population sizes were 22.35 and 46.03, respectively. The LT and ST strategies maintained 45.80% and 28.24%, respectively, of the original genetic diversity represented in the progeny test. So, it can be inferred that this population has potential for both breeding and ex situ genetic conservation as a supplier of genetic material for advanced rubber tree breeding programs. Copyright by the Brazilian Society of Genetics.
Resumo:
The lack of effective tools have hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 X 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
Plants are the basis of life on earth. We cannot overemphasize their importance. The value of plant genome initiatives is self-evident. The need is to identify priorities for action. The angiosperm genome is highly variable, but the extent of this variability is unknown. Uncertainties remain about the number of genes and the number of species living. Many plants will become extinct before they are discovered. We risk losing both genes and vital information about plant uses. There are also major gaps in our karyotypic knowledge. No chromosome count exists for >70% of angiosperm species. DNA C values are known for only ≈1% of angiosperms, a sample unrepresentative of the global flora. Researchers reported new relationships between genome size and characters of major interest for plant breeding and the environment and the need for more data. In 1997, a Royal Botanic Gardens Kew workshop identified gaps and planned international collaboration to fill them. An electronic version of the Angiosperm DNA C value database also was published. Another initiative, which will make a very significant contribution to the conservation of plant genetic diversity on a global scale is Kew’s Millennium Seed Bank, partly funded by the U.K. Millennium Commission, celebrating the year 2000. Costing up to £80 million (£1 = $1.62), its main aims are to collect and conserve the seed of almost all of the U.K. spermatophyte flora by the year 2000, to collect and conserve a further 10% of the world spermatophyte flora principally from the drylands by 2009, and to provide a world class building as the focus of this activity by 2000.
Resumo:
Thesis (M. S. in Agr.)--Cornell University, June, 1910.
Resumo:
Supplement; World list of plant breeders. (105 p.) issued in 1952 (Rome, Italy)
Resumo:
Cover title.
Resumo:
Frontispiece, illustrations, etc., are mounted.