988 resultados para Plant biology|Climate Change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weather variables, mainly temperature and humidity influence vectors, viruses, human biology, ecology and consequently the intensity and distribution of the vector-borne diseases. There is evidence that warmer temperature due to climate change will influence the dengue transmission. However, long term scenario-based projections are yet to be developed. Here, we assessed the impact of weather variability on dengue transmission in a megacity of Dhaka, Bangladesh and projected the future dengue risk attributable to climate change. Our results show that weather variables particularly temperature and humidity were positively associated with dengue transmission. The effects of weather variables were observed at a lag of four months. We projected that assuming a temperature increase of 3.3 °C without any adaptation measure and changes in socio-economic condition, there will be a projected increase of 16,030 dengue cases in Dhaka by the end of this century. This information might be helpful for the public health authorities to prepare for the likely increase of dengue due to climate change. The modelling framework used in this study may be applicable to dengue projection in other cities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change projections for Australia predict increasing temperatures, changes to rainfall patterns, and elevated atmospheric carbon dioxide (CO2) concentrations. The aims of this study were to predict plant production responses to elevated CO2 concentrations using the SGS Pasture Model and DairyMod, and then to quantify the effects of climate change scenarios for 2030 and 2070 on predicted pasture growth, species composition, and soil moisture conditions of 5 existing pasture systems in climates ranging from cool temperate to subtropical, relative to a historical baseline. Three future climate scenarios were created for each site by adjusting historical climate data according to temperature and rainfall change projections for 2030, 2070 mid-and 2070 high-emission scenarios, using output from the CSIRO Mark 3 global climate model. In the absence of other climate changes, mean annual pasture production at an elevated CO2 concentration of 550 ppm was predicted to be 24-29% higher than at 380 ppm CO2 in temperate (C-3) species-dominant pastures in southern Australia, with lower mean responses in a mixed C-3/C-4 pasture at Barraba in northern New South Wales (17%) and in a C-4 pasture at Mutdapilly in south-eastern Queensland (9%). In the future climate scenarios at the Barraba and Mutdapilly sites in subtropical and subhumid climates, respectively, where climate projections indicated warming of up to 4.4 degrees C, with little change in annual rainfall, modelling predicted increased pasture production and a shift towards C-4 species dominance. In Mediterranean, temperate, and cool temperate climates, climate change projections indicated warming of up to 3.3 degrees C, with annual rainfall reduced by up to 28%. Under future climate scenarios at Wagga Wagga, NSW, and Ellinbank, Victoria, our study predicted increased winter and early spring pasture growth rates, but this was counteracted by a predicted shorter spring growing season, with annual pasture production higher than the baseline under the 2030 climate scenario, but reduced by up to 19% under the 2070 high scenario. In a cool temperate environment at Elliott, Tasmania, annual production was higher than the baseline in all 3 future climate scenarios, but highest in the 2070 mid scenario. At the Wagga Wagga, Ellinbank, and Elliott sites the effect of rainfall declines on pasture production was moderated by a predicted reduction in drainage below the root zone and, at Ellinbank, the use of deeper rooted plant systems was shown to be an effective adaptation to mitigate some of the effect of lower rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eucalypt leaf beetle, Paropsis atomaria Olivier, is an increasingly important pest of eucalypt plantations in subtropical eastern Australia. A process-based model, ParopSys, was developed using DYMEXTM and was found to accurately predict the beetle populations. Climate change scenarios within the latest Australian climate model forecast range were run in ParopSys at three locations to predict changes in beetle performance. Relative population peaks of early generations did not change but shifted to earlier in the season. Temperature increases of 1.0 to 1.5 ºC or greater predicted an extra generation of adults at Gympie and Canberra, but not for Lowmead, where increased populations of late season adults were observed under all scenarios. Furthermore, an additional generation of late-larval stages was predicted at temperature increases of greater than 1.0 ºC at Lowmead. Management strategies to address these changes are discussed, as are requirements to improve the predictive capacity of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in atmospheric carbon dioxide (CO2) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO2 using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO2, the radiative effect of CO2 causes mean surface air temperature over land to increase by 2.86 ± 0.02 K (± 1 standard error), whereas the physiological effects of CO2 on land plants alone causes air temperature over land to increase by 0.42 ± 0.02 K. Combined, these two effects cause a land surface warming of 3.33 ± 0.03 K. The radiative effect of doubling CO2 increases global runoff by 5.2 ± 0.6%, primarily by increasing precipitation over the continents. The physiological effect increases runoff by 8.4 ± 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 ± 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO2-radiative forcing, whereas relative humidity over land decreases in response to CO2-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO2 on land plants will increase global warming beyond that caused by the radiative effects of CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AimBiodiversity outcomes under global change will be influenced by a range of ecological processes, and these processes are increasingly being considered in models of biodiversity change. However, the level of model complexity required to adequately account for important ecological processes often remains unclear. Here we assess how considering realistically complex frugivore-mediated seed dispersal influences the projected climate change outcomes for plant diversity in the Australian Wet Tropics (all 4313 species). LocationThe Australian Wet Tropics, Queensland, Australia. MethodsWe applied a metacommunity model (M-SET) to project biodiversity outcomes using seed dispersal models that varied in complexity, combined with alternative climate change scenarios and habitat restoration scenarios. ResultsWe found that the complexity of the dispersal model had a larger effect on projected biodiversity outcomes than did dramatically different climate change scenarios. Applying a simple dispersal model that ignored spatial, temporal and taxonomic variation due to frugivore-mediated seed dispersal underestimated the reduction in the area of occurrence of plant species under climate change and overestimated the loss of diversity in fragmented tropical forest remnants. The complexity of the dispersal model also changed the habitat restoration approach identified as the best for promoting persistence of biodiversity under climate change. Main conclusionsThe consideration of complex processes such as frugivore-mediated seed dispersal can make an important difference in how we understand and respond to the influence of climate change on biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100EJ: high agreement; 100-300EJ: medium agreement; above 300EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245EJyr(-1) to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large-scale deployment (>200EJ), together with BECCS, could help to keep global warming below 2 degrees degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Table of Contents [pdf, 0.22 Mb] Executive Summary [pdf, 0.31 Mb] Report of the 2001 BASS/MODEL Workshop [pdf, 0.65 Mb] To review ecosystem models for the subarctic gyres Report of the 2001 MONITOR Workshop [pdf, 0.7 Mb] To review ecosystem models for the subarctic gyres Workshop presentations: Sonia D. Batten PICES Continuous Plankton Recorder pilot project Phillip R. Mundy GEM (Exxon Valdez Oil Spill Trustee Council`s "Gulf Ecosystem Monitoring" initiative) and U.S. GOOS plans in the North Pacific Ron McLaren and Brian O`Donnell A proposal for a North Pacific Action group of the international Data Buoy Cooperation Panel Gilberto Gaxiola-Castrol and Sila Najera-Martinez The Mexican oceanographic North Pacific program: IMECOCAL Sydney Levitus Building global ocean profile and plankton databases for scientific research Report of the 2001 REX Workshop [pdf, 1.73 Mb] On temporal variations in size-at-age for fish species in coastal areas around the Pacific Rim Workshop presentations: Brian J. Pyper, Randall M. Peterman, Michael F. Lapointe and Carl J. Walters [pdf, 0.33 Mb] Spatial patterns of covariation in size-at-age of British Columbia and Alaska sockeye salmon stocks and effects of abundance and ocean temperature R. Bruce MacFarlane, Steven Ralston, Chantell Royer and Elizabeth C. Norton [pdf, 0.4 Mb] Influences of the 1997-1998 El Niño and 1999 La Niña on juvenile Chinook salmon in the Gulf of the Farallones Olga S. Temnykh and Sergey L. Marchenko [pdf, 0.5 Mb] Variability of the pink salmon sizes in relation with abundance of Okhotsk Sea stocks Ludmila A. Chernoivanova, Alexander N. Vdoven and D.V. Antonenko [pdf, 0.3 Mb] The characteristic growth rate of herring in Peter the Great Bay (Japan/East Sea) Nikolay I. Naumenko [pdf, 0.5 Mb] Temporal variations in size-at-age of the western Bering Sea herring Evelyn D. Brown [pdf, 0.45 Mb] Effects of climate on Pacific herring, Clupea pallasii, in the northern Gulf of Alaska and Prince William Sound, Alaska Jake Schweigert, Fritz Funk, Ken Oda and Tom Moore [pdf, 0.6 Mb] Herring size-at-age variation in the North Pacific Ron W. Tanasichuk [pdf, 0.3 Mb] Implications of variation in euphausiid productivity for the growth, production and resilience of Pacific herring (Clupea pallasi) from the southwest coast of Vancouver Island Chikako Watanabe, Ahihiko Yatsu and Yoshiro Watanabe [pdf, 0.3 Mb] Changes in growth with fluctuation of chub mackerel abundance in the Pacific waters off central Japan from 1970 to 1997 Yoshiro Watanabe, Yoshiaki Hiyama, Chikako Watanabe and Shiro Takayana [pdf, 0.35 Mb] Inter-decadal fluctuations in length-at-age of Hokkaido-Sakhalin herring and Japanese sardine in the Sea of Japan Pavel A. Balykin and Alexander V. Buslov [pdf, 0.4 Mb] Long-term variability in length of walley pollock in the western Bering Sea and east Kamchtka Alexander A. Bonk [pdf, 0.4 Mb] Effect of population abundance increase on herring distribution in the western Bering Sea Sergey N. Tarasyuk [pdf, 0.4 Mb] Survival of yellowfin sole (Limanda aspera Pallas) in the northern part of the Tatar Strait (Sea of Japan) during the second half of the 20th century Report of the 2002 MODEL/REX Workshop [pdf, 1.2 Mb] To develop a marine ecosystem model of the North Pacific Ocean including pelagic fishes Summary and Overview [pdf, 0.4 Mb] Workshop presentations: Bernard A. Megrey, Kenny Rose, Francisco E. Werner, Robert A. Klumb and Douglas E. Hay [pdf, 0.47 Mb] A generalized fish bioenergetics/biomass model with an application to Pacific herring Robert A. Klumb [pdf, 0.34 Mb] Review of Clupeid biology with emphasis on energetics Douglas E. Hay [pdf, 0.47 Mb] Reflections of factors affecting size-at-age and strong year classes of herring in the North Pacific Shin-ichi Ito, Yutaka Kurita, Yoshioki Oozeki, Satoshi Suyama, Hiroya Sugisaki and Yongjin Tian [pdf, 0.34 Mb] Review for Pacific saury (Cololabis saira) study under the VENFISH project lexander V. Leonov and Gennady A. Kantakov [pdf, 0.34 Mb] Formalization of interactions between chemical and biological compartments in the mathematical model describing the transformation of nitrogen, phosphorus, silicon and carbon compounds Herring group report and model results [pdf, 0.34 Mb] Saury group report and model results [pdf, 0.46 Mb] Model experiments and hypotheses Recommendations [pdf, 0.4 Mb] Achievements and future steps Acknowledgements [pdf, 0.29 Mb] References [pdf, 0.32 Mb] Appendix 1. List of Participants [pdf, 0.32 Mb] Appendices 2-5. FORTRAN codes [pdf, 0.4 Mb] (Document pdf contains 182 pages)