1000 resultados para Planetary Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past two decades, flat-plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere [1-6]. The ratio of terrestrial to extraterrestrial material and the nature of material collected may vary over observable time scales. Variations in particle number density can be important since the earth’s atmospheric radiation balance, and therefore the earth’s climate, can be influenced by articulate absorption and scattering of radiation from the sun and earth [7-9]. In order to assess the number density of solid particles in the stratosphere, we have examined a representative fraction of the so1id particles from two flat-plate collection surfaces, whose collection dates are separated in time by 5 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chondritic porous aggregates (CPA's) belong to an important subset of small particles (usually between 5 and 50 micrometers) collected from the stratosphere by high flying aircraft. These aggregates are approximately chondritic in elemental abundance and are composed of many thousands of small­er, submicrometer particles. CPA particles have been the subject of intensive study during the past few years [1-3] and there is strong evidence that they are a new class of extraterrestrial material not represented in the meteorite collection [3,4]. However, CPA's may be related to carbonaceous chondrites and in fact, both may be part of a continuum of primitive extraterrestrial materials [5]. The importance of CPA's stems from suggestions that they are very primitive solar system material possibly derived from early formed proto­ planets, chondritic parent bodies, or comets [3, 6]. To better understand the origin and evolution of these particles, we have attempted to summarize all of the mineralogical data on identified CPA's published since about 1976.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new set of primitive extraterrestrial materials collected in the Earth's stratosphere include Chondritic Porous Aggregates (CPA's) [1]. CPAs have a complex and variable mineralogy [1-3] that include 'organic compounds' [4,5] and poorly graphitised carbon (PGC)[6]. This study presents a continuation of our detailed Analytical Electron Microscope study on carbon-rich CPA W7029*A from the JSC Cosmic Dust Collection. This CPA is an uncontaminated sample that survived atmospheric entry without appreciable alteration [7] and which contains ~44% carbonaceous material. The carbonaceous composition of selected particles was confirmed by Electron Energy Loss Spectroscopy and Selected Area Electron Diffraction (SAED). Possible carbonaceous contaminants introduced by specimen preparation techniques are easily recognised from indigenous CPA carbon particles [8] and do not bias our interpretations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed analytical electron microscope analyses of four fine-grained chondritic porous interplanetary dust particles (IDPs)reveal the presence of titanium oxide Magneli phases, TinO2n-1 (n=4,5,6), and rare Ti-metal. The titanium minerals are indigenous to these chondritic IDPs. The association of Magneli phases, Ti-metal, and carbonaceous material in chondritic IDPs, along with the grain size distributions support in situ solid carbon gasification in these extraterrestrial particles. The active catalyst in this process is titanium metal that we infer may be of interstellar origin. This favorable catalysis uniquely leads to the formation of Magneli phases. As chondritic IDPs may be solid debris of short-period comets, our data indicate that nuclei of short-period comets may show distinctive chemical reactions that lead to Ti-mineral assemblages that typically include Magneli phases. The proposed model provides a plausible mechnism to explain the higher solid carbon content of chondritic IDPs relative to bulk carbon abundances typical for carbonaceous chondrite matrices that represent another type of more evolved, that is, metamorphosed, undifferentiated solar system bodies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beginning in 1974, a limited effort to collect extraterrestrial dust samples from the stratosphere using impactors mounted on NASA U-2 aircraft was initiated at NASA Ames Research Center (1). Subsequent studies (e.g. 1-9) have clearly established an extraterrestrial origin for some of the material. Attrition of comets is considered to be one of the potential sources of extraterrestrial dust(1,5). Additionally, some of the particles appear to represent a type of primitive material not represented in meteorite collections. In order to provide a greater availability of these samples to the scientific community, NASA-Johnson Space Center (JSC) began in May of 1981 a program dedicated to the systematic collection and curation of cosmic dust for scientific investigation. Collections were made at 18 to 20 km altitude by means of collectors mounted under the wings of a WB57F. When the aircraft reaches operating altitude, the collector plates (impactors) are extended into the ambient airstream with the collection surface normal to the airflow. To prevent particles from bouncing off the surface, the impactors are coated with a film of high viscosity silicone oil. The impactors are sealed in canisters to minimize contamination when not collecting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Greater than 750 individual particles have now been selected from collection flags housed in the JSC Cosmic Dust Curatorial Facility and most have been documented in the Cosmic Dust Catalogs [1]. As increasing numbers of particles are placed in Cosmic Dust Collections, and a greater diversity of particles are introduced to the stratosphere through natural and man-made processes (e.g. decaying orbits of space debris [2]), there is an even greater need for a classification scheme to encompass all stratospheric particles rather than only extraterrestrial particles. The fundamental requirements for a suitable classification scheme have been outlined in earlier communications [3,4]. A quantitative survey of particles on collection flag W7017 indicates that there is some bias in the number of samples selected within a given category for the Cosmic Dust Catalog [5]. However, the sample diversity within this selection is still appropriate for the development of a reliable classification scheme. In this paper, we extend the earlier works on stratospheric particle classification to include particles collected during the period May 1981 to November 1983.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine-grained matrices in carbonaceous chondrites and small, micron-sized inclusions in achondrites can be characterized effectively using high resolution transmission electron micro­scopy (HRTEM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies of C2 carbonaceous chondrite matrices using high resolu­tion transmission electron microscopy (HRTEM)have shown that structural details of the matrix minerals can be imaged [1-4]. The Murchison and Mighei matrices contain minerals having ordered and disordered mixed-layer structures [1,3,4] in addition to chrysotile- and lizardite-type structures [2].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Filamentary single crystals, blades, sheets, euhedral crystals and powders may form by vapor phase condensation depending on the supersauration conditions in the vapor with respect to the condensing species [1]. Filamentary crystal growth requires the operation of an axial screw dislocation [2]. A Vapor-Liquid-Solid (VLS) mechanism may also produce filamentary single crystals, ribbons and blades. The latter two morphologies are typically twinned. Crystals grown by this mechanism do not require the presence of an axial screw dislocation. Impurities may either promote or inhibit crystal growth [3]. The VLS mechanism allows crystals to grow at small supersaturation of the vapor. Thin enstatite blades, ribbons and sheets have been observed in chondritic porous Interplanetary Dust Partics (IDP's) [4, 5]. The requisite screw dislocation for vapor phase condensation [1] has been observed in these enstatite blades [4]. Bradley et al. [4] suggest that these crystals are primary vapor phase condensates which could have formed either in the solar nebula or in presolar environments. These observations [4,5] are significant in that they may provide a demonstrable link to theoretical predictions: viz. that in the primordial solar nebula filamentary condensates could cluster into 'lint balls' and form the predecessors to comets [6].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent NASA program to collect stratospheric dust particles using high-flying WB57 aircraft has made available many more potential candidates for the study of extraterrestrial materials. This preliminary report provides an interpretation of the types of particles returned from one flag (W7017) collected in August, 1981 using a subset of 81 allocated particles. This particular collection period is after the Mt. St. Helen's eruptions. Therefore, the flag may contain significant quantities of volcanic debris in addition to the expected terrestrial contaminants [1]. All particles were mounted on nucleopore filters and have been examined using a modified JEOL100CX analytical electron microscope. For most of the particles, X-ray energy dispersive spectra and images were obtained at 40kV on samples which have not received any conductive coating. However, in order to improve resolution (to ~30A) some images are recorded at 100kV. In addition, 16 samples have been coated with a thin layer (<50A) of Au/Pd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The controversy on how to interpret the ages of lunar highland breccias has recently been discussed by James [1]. Are the measured ages testimony of true events in lunar history; do they represent the age of the ancient crustal rocks, mixed ages of unequilibrated matrix-phenocryst relationships, or merely thermal events subsequent to the formational event ? It is certain from analyses of terrestrial impact melt breccias that the melt matrix of whole impact melt sheets is isotopically equilibrated due to the extensive mixing process of the early cratering stage [2,3]. It has been shown that isotopic equilibration takes place between impact melt matrix and target rock clasts therein, with the intensity of isotopic exchange depending on the degree of shock metamorphism, thermal metamorphism and the size of the clasts [4]. Therefore, impact melt breccias - if they are relatively clast-poor and mineralogically well studied - can be considered to be the most reliable source for information on the impact history of the lunar highland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have performed electron-microscopic analysis on 0.5-1.0µm grains in order to study radiation damage by the solar-wind. We are reporting some interesting results we have found in monomineralic grains from core sample 15010,1130. This is a submature soil which has been studied for rare gas abundance and ferromagnetic resonance by (1) and modal petrology by (2).