95 resultados para Pinene methoxylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation.

The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate.

Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f99) was found to coincide with periods of heavy (f42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( < 1 hr) compared to the time needed for particles to become hygroscopic at sub-saturated humidity ( > 4 hr).

Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate.

Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以杉科(Taxodiaceae)五属六种植物--杉木属(Cunninghamia)的杉木(C. lanceolata)、水松属(Glyptostrobus)的水松(G. pensilis)、落羽杉属(Taxodium)的池杉(T. ascendens)、水杉属(Metasequoia)的水杉(M. glyptostroboides)、柳杉属(Cryptomeria)的柳杉(C. fortunei)及日本柳杉(C. japonica)为材料,进行了以下研究: 1、用气相色谱-质谱-计算机联用法,在统一条件下测定了上述植物叶的精油成分及各成分百分含量。共检测到七十余种成分,包括α-蒎稀(α-pinene)、龙脑(borneol)、乙酸松油酯(terpinyl acetate)、杜松烯(cadinene)等十六种共有成分和其它分布各异的成分。 2、用柱层析和薄层层析法从杉木中提取、分离、纯化了5个双黄酮成分,鉴定为一类3'-8"联接的化合物,分别为穗花杉双黄酮(amentoflavone)、长叶世界爷双黄酮(sequoiaflavone)、银杏双黄酮(gingetin)、榧黄素(kayaflavone)和金松双黄酮(sciadopitysin)。 3、用薄层层析法检测上述5个双黄酮成分在6种植物中的分布,发现每一植物均含有这五个已知化合物。 4、根据以上结果并结合文献资料,讨论了以下问题: 1)、杉科植物精油成分及其组成特点; 2)、杉科植物双黄酮成分及其分布规律; 3)有关柳杉与日本柳杉关系的化学证据; 4)有关水杉归属的化学证据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of the leaf oils from seven populations of J. sabina L., one population of Juniperus sabina var. arenaria (E. H. Wilson) Farjon were examined for their geographic variation. In addition, the leaf oils of J. chinensis L. and J. davurica Pall. were compared to J. sabina. Juniperus sabina var. arenarla, the sand loving juniper, oil was found to be very similar to that of J. davurica, Mongolia, and J. sabina, on sand dunes in Mongolia. This suggests that J. sabina var. arenaria might be conspecific with J. davurica. Farjon's move (2001) of J. sabina var. arenaria out of J. chinensis is supported. Considerable differentiation was found in populations of J. sabina from the Iberian peninsula. Cedrol, citronellol, safrole, trans-sabinyl acetate, terpinen-4-ol and beta-thujone were found to be polymorphic in several populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethnopharmacological relevance: Schinus molle L. has been used in folk medicine as antibacterial, antiviral, topical antiseptic, antifungal, antioxidant, anti-inflammatory, anti-tumoural as well as antispasmodic and analgesic; however, there are few studies of pharmacological and toxicological properties of S. molle essential oils. Aim of the study: The aim of this study was to evaluate the antioxidant and antimicrobial activities of S. molle leaf and fruit essential oils, correlated with their chemical composition and evaluate their acute toxicity. Materials and methods: The chemical composition of S. molle leaf and fruit essential oils were evaluated by GC-FID and GC-MS. Antioxidant properties were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and β-carotene/linoleic acid methods. Antimicrobial properties were evaluated by the agar disc diffusion method and minimal inhibitory concentration assay. Toxicity in Artemia salina and acute toxicity with behavioural screening in mice were evaluated. Results: The dominant compounds found in leaf and fruit essential oils (EOs) were monoterpene hydrocarbons, namely -phellandrene, β-phellandrene, β-myrcene, limonene and α-pinene. EOs showed low scavenging antioxidant activity by the DPPH free radical method and a higher activity by the β-carotene/linoleic acid method. Antimicrobial activity of EOs was observed for Gram+, Gram– pathogenic bacteria and food spoilage fungi. EOs showed cytotoxicity for Artemia salina and lower toxicity in Swiss mice. Conclusions: The result showed that EOs of leaves and fruits of S. molle demonstrated antioxidant and antimicrobial properties, suggesting their potential use in food or pharmaceutical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total phenol, hydroxycinnamic acid derivatives, flavone/flavonol and flavanones/dihydroflavonol contents of hydro-alcoholic extracts, obtained by sonication, from the aerial parts of Artemisia campestris L., Anthemis arvensis L., Haloxylon scoparium Pomel, Juniperus phoenicea L., Arbutus unedo L., Cytisus monspessulanus L., Thymus algeriensis Boiss et Reut, Zizyphus lotus L (Desf.) collected in Djebel Amour (Sahara Atlas, Algeria) were quantified by spectrophotometric methods. The chemical composition of the essential oils obtained by hydrodistillation from Artemisia campestris L. and Juniperus phoenicea I aerial parts were also evaluated by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). The antioxidant activity of the extracts and essential oils was assessed measuring the capacity for preventing lipid peroxidation using two lipidic substrates (egg yolk and liposomes), the capacity for scavenging DPPH, ABTS, superoxide anion radicals, hydroxyl radicals and peroxyl radicals. Anti-inflammatory activity was assessed by measuring the capacity for inhibiting lipoxygenase. Reducing power and chelating capacity were also assayed. The results showed different amounts of total phenols depending on the method used: A. campestris extract had the highest levels of total phenols when the measurement was made at lambda = 280 nm, whereas H. scoparium and A. unedo extracts showed the highest levels of total phenols with Folin-Ciocalteau. C. monspessulanus had the highest levels of flavones/flavonols and flavanones/dihydroflavonols. The essential oils of A. campestris and J. phoenicea were mainly constituted by alpha-pinene, beta-pinene and sabinene; and a-pinene, respectively. The methods used for assaying the capacity for preventing lipid peroxidation revealed to be inadequate for extracts due to the great interferences detected. The essential oils were more active than the generality of extracts for scavenging peroxyl radicals and for inhibiting lipoxygenase, whereas A. unedo extract was the most active for scavenging ABTS, DPPH, superoxide anion radicals and it also had the best reducing capacity. In a general way, the great majority of the antioxidant activities correlated well with the phenol content although such correlation was not so clear with the flavonoid content. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gas-phase reactions of ozone with unsaturated hydrocarbons are significant sources of free radical species (including (OH)-O-center dot) and particulate material in the Earth's atmosphere. In this tutorial review, the kinetics, products and mechanisms of these reactions are examined, starting with a discussion of the original mechanism proposed by Criegee and following with a summary presentation of the complex, free radical-mediated reactions of carbonyl oxide (Criegee) intermediates. The contribution of ozone-terpene reactions to the atmospheric burden of secondary organic aerosol material is also discussed from the viewpoint of the formation of non-volatile organic acid products from the complex chemistry of ozone with alpha-pinene. Throughout the article, currently accepted understanding is supported through the presentation of key experimental results, and areas of persistent or new uncertainty are highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 ( MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by alpha-and beta-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C-7-diacids and three isomers of C-7-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e. g. the branching ratio between the two hydroperoxide channels of the C-7-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C-7-CI were also obtained from measurements of the C-7 primary carbonyl product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chromatography coupled to mass spectrometry after derivation. Product yields were determined as a function of different OH radical scavengers and relative humidities to give mechanistic information about their routes of formation. Furthermore, an enone and an enal derived from 3-carene were ozonised in order to probe the early mechanistic steps in the reaction and, in particular, which of the two initially formed Criegee intermediates gives rise to which products. Branching ratios for the formation of the two Criegee Intermediates are determined. Similarities and differences in product formation from 3-carene and alpha-pinene ozonolysis are discussed and possible mechanisms-supported by experimental evidence-are developed for all acids investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative rate method has been used to measure the room-temperature rate constants for the gasphase reactions of ozone and NO3 with selected monoterpenes and cyclo-alkenes with structural similarities to monoterpenes. Measurements were carried out at 298 ! 2 K and 760 ! 10 Torr. The following rate constants (in units of 10"18 cm3 molecule"1 s"1) were obtained for the reaction with ozone: methyl cyclohexene (132 ! 17), terpinolene (1290 ! 360), ethylidene cyclohexane (223 ! 57), norbornene (860 ! 240), t-butyl isopropylidene cyclohexane (1500 ! 460), cyclopentene (543 ! 94), cyclohexene (81 ! 18), cyclooctene (451 ! 66), dicyclopentadiene (1460 ! 170) and a-pinene (107 ! 13). For the reaction with NO3 the rate constants obtained (in units of 10"12 cm3 molecule"1 s"1) were: methyl cyclohexene (7.92 ! 0.95), terpinolene (47.9 ! 4.0), ethylidene cyclohexane (4.30 ! 0.24), norbornene (0.266 ! 0.029), cyclohexene (0.540 ! 0.017), cyclooctene (0.513 ! 0.029), dicyclopentadiene (1.20 ! 0.10) and a-pinene (5.17 ! 0.62). Errors are quoted as the root mean square of the statistical error (95% con!dence) and the quoted error in the rate constant for the reference compound. Combining these results with previous studies, new recommendations for the rate constants are presented. Molecular orbital energies were calculated for each alkene and the kinetic data are discussed in terms of the deviation from the structureeactivity relationship obtained from the rate constants for a series of simple alkenes. Lifetimes with respect to key initiators of atmospheric oxidation have been calculated suggesting that the studied reactions play dominant roles in the night-time removal of these compounds from the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic fertilizers based on seaweed extract potentially have beneficial effects on many crop plants. Herewe investigate the impact of organic fertilizer on Rosmarinus officinalis measured by both yield and oilquality. Plants grown in a temperature-controlled greenhouse with a natural photoperiod and a controlledirrigation system were treated with seaweed fertilizer and an inorganic fertilizer of matching mineralcomposition but with no organic content. Treatments were either by spraying on to the foliage or wateringdirect to the compost. The essential oil was extracted by hydro-distillation with a Clevenger apparatusand analysed by gas-chromatography mass-spectrometry (GC–MS) and NMR. The chemical composi-tions of the plants were compared, and qualitative differences were found between fertilizer treatmentsand application methods. Thus sprayed seaweed fertilizer showed a significantly higher percentage of�-pinene, �-phellandrene, �-terpinene (monoterpenes) and 3-methylenecycloheptene than other treat-ments. Italicene, �-bisabolol (sesquiterpenes), �-thujene, and E-isocitral (monoterpenes) occurred insignificantly higher percentages for plants watered with the seaweed extract. Each was significantly dif-ferent to the inorganic fertilizer and to controls. The seaweed treatments caused a significant increasein oil amount and leaf area as compared with both inorganic treatments and the control regardless ofapplication method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deterpenation of bergamot essential oil can be performed by liquid liquid extraction using hydrous ethanol as the solvent. A ternary mixture composed of 1-methyl-4-prop-1-en-2-yl-cydohexene (limonene), 3,7-dimethylocta-1,6-dien-3-yl-acetate (linalyl acetate), and 3,7-dimethylocta-1,6-dien-3-ol (linalool), three major compounds commonly found in bergamot oil, was used to simulate this essential oil. Liquid liquid equilibrium data were experimentally determined for systems containing essential oil compounds, ethanol, and water at 298.2 K and are reported in this paper. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were lower than 0.0062 in all systems, indicating the good descriptive quality of the molecular models. To verify the effect of the water mass fraction in the solvent and the linalool mass fraction in the terpene phase on the distribution coefficients of the essential oil compounds, nonlinear regression analyses were performed, obtaining mathematical models with correlation coefficient values higher than 0.99. The results show that as the water content in the solvent phase increased, the kappa value decreased, regardless of the type of compound studied. Conversely, as the linalool content increased, the distribution coefficients of hydrocarbon terpene and ester also increased. However, the linalool distribution coefficient values were negatively affected when the terpene alcohol content increased in the terpene phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymmetric emission profiles of the stereoisomers of plant-derived volatile organic compounds vary with season, geography, plant type, and stress factors. After oxidation of these compounds in the atmosphere, the low-vapor pressure products ultimately contribute strongly to the particle-phase material of the atmosphere. In order to explore the possibility of stereochemical transfer to atmospheric aerosol particles during the oxidation of biogenic volatile organic compounds, second-order coherent vibrational spectra were recorded of the particle-phase organic material produced by the oxidation of different stereoisomeric mixes of alpha-pinene. The spectra show that the stereochemical configurations are not scrambled but instead are transferred from the gas-phase molecular precursors to the particle-phase molecules. The spectra also show that oligomers formed in the particle phase have a handed superstructure that depends strongly and nonlinearly on the initial stereochemical composition of the precursors. Because the stereochemical mix of the precursors for a material can influence the physical and chemical properties of that material, our findings suggest that chirality is also important for such properties of plant-derived aerosol particles. Citation: Ebben, C. J., S. R. Zorn, S.-B. Lee, P. Artaxo, S. T. Martin, and F. M. Geiger (2011), Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett., 38, L16807, doi: 10.1029/2011GL048599.