992 resultados para Physiological models
Resumo:
BACKGROUND Several evidences indicate that gut microbiota is involved in the control of host energy metabolism. OBJECTIVE To evaluate the differences in the composition of gut microbiota in rat models under different nutritional status and physical activity and to identify their associations with serum leptin and ghrelin levels. METHODS IN A CASE CONTROL STUDY, FORTY MALE RATS WERE RANDOMLY ASSIGNED TO ONE OF THESE FOUR EXPERIMENTAL GROUPS: ABA group with food restriction and free access to exercise; control ABA group with food restriction and no access to exercise; exercise group with free access to exercise and feed ad libitum and ad libitum group without access to exercise and feed ad libitum. The fecal bacteria composition was investigated by PCR-denaturing gradient gel electrophoresis and real-time qPCR. RESULTS In restricted eaters, we have found a significant increase in the number of Proteobacteria, Bacteroides, Clostridium, Enterococcus, Prevotella and M. smithii and a significant decrease in the quantities of Actinobacteria, Firmicutes, Bacteroidetes, B. coccoides-E. rectale group, Lactobacillus and Bifidobacterium with respect to unrestricted eaters. Moreover, a significant increase in the number of Lactobacillus, Bifidobacterium and B. coccoides-E. rectale group was observed in exercise group with respect to the rest of groups. We also found a significant positive correlation between the quantity of Bifidobacterium and Lactobacillus and serum leptin levels, and a significant and negative correlation among the number of Clostridium, Bacteroides and Prevotella and serum leptin levels in all experimental groups. Furthermore, serum ghrelin levels were negatively correlated with the quantity of Bifidobacterium, Lactobacillus and B. coccoides-Eubacterium rectale group and positively correlated with the number of Bacteroides and Prevotella. CONCLUSIONS Nutritional status and physical activity alter gut microbiota composition affecting the diversity and similarity. This study highlights the associations between gut microbiota and appetite-regulating hormones that may be important in terms of satiety and host metabolism.
Resumo:
Biological monitoring of occupational exposure is characterized by important variability, due both to variability in the environment and to biological differences between workers. A quantitative description and understanding of this variability is important for a dependable application of biological monitoring. This work describes this variability,using a toxicokinetic model, for a large range of chemicals for which reference biological reference values exist. A toxicokinetic compartmental model describing both the parent compound and its metabolites was used. For each chemical, compartments were given physiological meaning. Models were elaborated based on physiological, physicochemical, and biochemical data when available, and on half-lives and central compartment concentrations when not available. Fourteen chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, penthachlorophenol, phenol, and toluene), representing 20 biological indicators. Occupational exposures were simulated using Monte Carlo techniques with realistic distributions of both individual physiological parameters and exposure conditions. Resulting biological indicator levels were then analyzed to identify the contribution of environmental and biological variability to total variability. Comparison of predicted biological indicator levels with biological exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability associated with changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, for the 14 chemicals modeled, biological monitoring would be preferable to air monitoring. For short half-lives (less than 7 hr), this is very similar to the environmental variability. However, for longer half-lives, estimated variability decreased. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables detailing the CBTK models for all 14 chemicals and the symbol nomenclature that was used.] [Authors]
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
Astrocytes have traditionally been considered ancillary, satellite cells of the nervous system. However, it is a very recent acquisition that glial cells generate signaling loops which are integral to the brain circuitry and participate, interactively with neuronal networks, in the processing of information. Such a conceptual breakthrough makes this field of investigation one of the hottest in neuroscience, as it calls for a revision of past theories of brain function as well as for new strategies of experimental exploration of brain function. Glial cells are electrically not excitable, and it was only the use of optical recording techniques together with calcium sensitive dyes, that allowed the chemical excitability of glial cells to become apparent. Studies using these new techniques have shown for the first time that glial cells are activated by surrounding synaptic activity and translate neuronal signals into their own calcium code. Intracellular calcium concentration([Ca2+]i) elevations in glial cells have then shown to underlie spatial transfer of information in the glial network, accompanied by release of chemical transmitters (gliotransmitters) such as glutamate and back-signaling to neurons. As a consequence, optical imaging techniques applied to cell cultures or intact tissue have become a state-of-the-art technology for studying glial cell signaling. The molecular mechanisms leading to release of "gliotransmitters," especially glutamate, from glia are under debate. Accumulating evidence clearly indicates that astrocytes secrete numerous transmitters by Ca(2+)-dependent exocytosis. This review will discuss the mechanisms underlying the release of chemical transmitters from astrocytes with a particular emphasis to the regulated exocytosis processes.
Resumo:
Protein S (ProS) is an important negative regulator of blood coagulation. Its physiological importance is evident in purpura fulminans and other life-threatening thrombotic disorders typical of ProS deficient patients. Our previous characterization of ProS deficiency in mouse models has shown similarities with the human phenotypes: heterozygous ProS-deficient mice (Pros+/-) had increased thrombotic risk whereas homozygous deficiency in ProS (Pros-/-) was incompatible with life (Blood 2009; 114:2307-2314). In tissues, ProS exerts cellular functions by binding to and activating tyrosine kinase receptors of the Tyro3 family (TAM) on the cell surface.To extend the analysis of coagulation defects beyond the Pros-/- phenotype and add new insights into the sites of synthesis ProS and its action, we generated mice with inactivated ProS in hepatocytes (Proslox/loxAlbCre+) as well as in endothelial and hematopoietic cells (Proslox/loxTie2Cre+). Both models resulted in significant reduction of circulating ProS levels and in a remarkable increased thrombotic risk in vivo. In a model of tissue factor (TF)-induced venous thromboembolism (VTE), only 17% of Proslox/loxAlbCre+ mice (n=12) and only 13% of Proslox/loxTie2Cre+ mice (n=14) survived, compared with 86% of Proslox/lox mice (n=14; P<0.001).To mimic a severe acquired ProS deficiency, ProS gene was inactivated at the adult stage using the polyI:C-inducible Mx1-Cre system (Proslox/loxMx1Cre+). Ten days after polyI:C treatment, Proslox/loxMx1Cre+ mice developed disseminated intravascular coagulation with extensive lung and liver thrombosis.It is worth noting that no skin lesions compatible with purpura fulminans were observed in any of the above-described models of partial ProS deficiency. In order to shed light on the pathogenesis of purpura fulminans, we exposed the different ProS-deficient mice to warfarin (0.2 mg/day). We observed that Pros+/-, Proslox/loxAlbCre+ and Proslox/loxTie2Cre+ mice developed retiform purpura (characterized by erythematous and necrotic lesions of the genital region and extremities) and died after 3 to 5 days after the first warfarin administration.In human, ProS is also synthesized by megakaryocytes and hence stored at high concentrations in circulating platelets (pProS). The role of pProS has been investigated by generating megakaryocyte ProS-deficient model using the PF4 promoter as Cre driver (Proslox/loxPf4Cre+). In the TF-induced VTE model, Proslox/loxPf4Cre+ (n=15) mice showed a significant increased risk of thrombosis compared to Proslox/lox controls (n=14; survival rate 47% and 86%, respectively; P<0.05). Furthermore, preliminary results suggest survival to be associated with higher circulating ProS levels. In order to evaluate the potential role of pProS in thrombus formation, we investigated the thrombotic response to intravenous injection of collagen-epinephrine in vivo and platelet function in vitro. Both in vivo and in vitro experiments showed similar results between Proslox/loxPf4Cre+ and Proslox/lox, indicating that platelet reactivity was not influenced by the absence of pProS. These data suggest that pProS is delivered at the site of thrombosis to inhibit thrombin generation.We further investigated the ability of ProS to function as a ligand of TAM receptors, by using homozygous and heterozygous deficient mice for both the TAM ligands ProS and Gas6. Gas6-/-Pros-/- mice died in utero and showed comparable dramatic bleeding and thrombotic phenotype as described for Pros-/- embryos.In conclusion, like complete ProS deficiency, double deficiency in ProS and Gas6 was lethal, whereas partial ProS deficiency was not. Mice partially deficient in ProS displayed a prothrombotic phenotype, including those with only deficiency in pProS. Purpura fulminans did not occur spontaneously in mice with partial Pros deficiency but developed upon warfarin administration.Thus, the use of different mice models of ProS deficiency can be instrumental in the study of its highly variable thrombotic phenotype and in the investigation of additional roles of ProS in inflammation and autoimmunity through TAM signaling.
Resumo:
PURPOSE OF REVIEW: HIV targets primary CD4(+) T cells. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. Identifying the virus-host interactions that drive these dynamic changes is important for a better understanding of viral pathogenesis and persistence. The present review focuses on experimental and computational approaches to study the dynamics of viral replication and latency. RECENT FINDINGS: It was recently shown that only a fraction of the inducible latently infected reservoirs are successfully induced upon stimulation in ex-vivo models while additional rounds of stimulation make allowance for reactivation of more latently infected cells. This highlights the potential role of treatment duration and timing as important factors for successful reactivation of latently infected cells. The dynamics of HIV productive infection and latency have been investigated using transcriptome and proteome data. The cellular activation state has shown to be a major determinant of viral reactivation success. Mathematical models of latency have been used to explore the dynamics of the latent viral reservoir decay. SUMMARY: Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Endocrine disruption is defined as the perturbation of the endocrine system, which includes disruption of nuclear hormone receptor signalling. Peroxisome proliferator-activated receptors (PPARs) represent a family of nuclear receptors that has not yet been carefully studied with regards to endocrine disruption, despite the fact that PPARs are known to be important targets for xenobiotics. Here we report a first comprehensive approach aimed at defining the mechanistic basis of PPAR disruption focusing on one chemical, the plasticizer monethylhexyl phthalate (MEHP), but using a variety of methodologies and models. We used mammalian cells and a combination of biochemical and live cell imaging techniques to show that MEHP binds to PPAR gamma and selectively regulates interactions with coregulators. Micro-array experiments further showed that this selectivity is translated at the physiological level during adipocyte differentiation. In that context, MEHP functions as a selective PPAR modulator regulating only a subset of PPAR gamma target genes compared to the action of a full agonist. We also explored the action of MEHP on PPARs in an aquatic species, Xenopus laevis, as many xenobiotics are found in aquatic ecosystems. In adult males, micro-array data indicated that MEHP influences liver physiology, possibly through a cross-talk between PPARs and estrogen receptors (ER). In early Xenopus laevis embryos, we showed that PPAR beta/delta exogenous activation by an agonist or by MEHP affects development. Taken together our results widen the concept of endocrine disruption by pinpointing PPARs as key factors in that process.
Resumo:
Risk maps summarizing landscape suitability of novel areas for invading species can be valuable tools for preventing species' invasions or controlling their spread, but methods employed for development of such maps remain variable and unstandardized. We discuss several considerations in development of such models, including types of distributional information that should be used, the nature of explanatory variables that should be incorporated, and caveats regarding model testing and evaluation. We highlight that, in the case of invasive species, such distributional predictions should aim to derive the best hypothesis of the potential distribution of the species by using (1) all distributional information available, including information from both the native range and other invaded regions; (2) predictors linked as directly as is feasible to the physiological requirements of the species; and (3) modelling procedures that carefully avoid overfitting to the training data. Finally, model testing and evaluation should focus on well-predicted presences, and less on efficient prediction of absences; a k-fold regional cross-validation test is discussed.
Resumo:
Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Resumo:
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call ‘‘third component’’) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Resumo:
T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.
Resumo:
T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.
Resumo:
The broiler rectal temperature (t rectal) is one of the most important physiological responses to classify the animal thermal comfort. Therefore, the aim of this study was to adjust regression models in order to predict the rectal temperature (t rectal) of broiler chickens under different thermal conditions based on age (A) and a meteorological variable (air temperature - t air) or a thermal comfort index (temperature and humidity index -THI or black globe humidity index - BGHI) or a physical quantity enthalpy (H). In addition, through the inversion of these models and the expected t rectal intervals for each age, the comfort limits of t air, THI, BGHI and H for the chicks in the heating phase were determined, aiding in the validation of the equations and the preliminary limits for H. The experimental data used to adjust the mathematical models were collected in two commercial poultry farms, with Cobb chicks, from 1 to 14 days of age. It was possible to predict the t rectal of conditions from the expected t rectal and determine the lower and superior comfort thresholds of broilers satisfactorily by applying the four models adjusted; as well as to invert the models for prediction of the environmental H for the chicks first 14 days of life.
Resumo:
Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.