993 resultados para Physical quantities


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission Volume Phase Holographic Grating (VPHG) is adopted as spectral element in the real-time Optical Channel Performance Monitor (OCPM), which is in dire need in the Dense Wavelength -division-multiplexing(DATDM) system. And the tolerance of incident angle, which can be fully determined by two angles: 6 and (p, is finally inferred in this paper. Commonly, the default setting is that the incident plane is perpendicular to the fringes when the incident angle is mentioned. Now the situation out of the vertical is discussed. By combining the theoretic analysis of VPHG with its use in OCPM and changing 6 and (0 precisely in the computation and experiment, the two physical quantities which can fully specify the performance of VPHG the diffraction efficiency and the resolution, are analyzed. The results show that the diffraction efficiency varies greatly with the change of 6 or (p. But from the view of the whole C-band, only the peak diffraction efficiency drifts to another wavelength. As for the resolution, it deteriorates more rapidly than diffraction efficiency with the change of (p, while more slowly with the change of theta. Only if \phi\less than or equal to+/-1degrees and alpha(B) -0.5 less than or equal to theta less than or equal to alpha(B) + 0.5, the performance of the VPHG would be good enough to be used in OCPM system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond covalencies in R2BaCuO5 (R = Sm, Gd, Dy, Ho, Y, Er, Tm, Yb, Lu) were calculated by means of a semiempirical method. This method is the generalization of the dielectric description theory of Phillips-Van Vechten-Levine-Tanaka scheme. The present paper presents the formula concerning the decomposing of complex crystals which are usually anisotropic systems into the sum of binary crystals which are isotropic systems. It can be seen that although the bond covalency is related to many physical quantities, it is mainly influenced by bond valence or bond charge, and a higher bond valence will produce higher bond covalency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considerable effort is required to implement solar radiation models in software. Many existing implementations have efficiency as their main priority rather than re-usability, and this can adversely affect their further development since the relationships between the software and physical quantities may be obscured. The Solar Toolkit is an attempt to overcome such barriers by exploiting the current abundance of computing resource, and the availability of user-oriented tools such as Microsoft Excel®. The Solar Toolkit takes the form of a set of functions written in Visual Basic for Applications® (VBA) made available under the Academic Free Licence. Transparency is the overriding priority throughout the implementation so that the Toolkit can provide a platform for further modelling initiatives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, História e Filosofia das Ciências, Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The definition of coherent derived units in the International System of Units (SI) is reviewed, and the important role of the equations defining physical quantities is emphasized in obtaining coherent derived units. In the case of the dimensionless quantity plane angle, the choice between alternative definitions is considered, leading to a corresponding choice between alternative definitions of the coherent derived unit - the radian, degree or revolution. In this case the General Conference on Weights and Measures (CGPM) has chosen to adopt the definition that leads to the radian as the coherent derived unit in the SI. In the case of the quantity logarithmic decay (or gain), also sometimes called decrement, and sometimes called level, a similar choice of defining equation exists, leading to a corresponding choice for the coherent derived unit - the neper or the bel. In this case the CGPM has not yet made a choice. We argue that for the quantity logarithmic decay the most logical choice of defining equation is linked to that of the radian, and is that which leads to the neper as the corresponding coherent derived unit. This should not prevent us from using the bel and decibel as units of logarithmic decay. However, it is an important part of the SI to establish in a formal sense the equations defining physical quantities, and the corresponding coherent derived units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the availability of hemispheric gridded data sets from observations, analysis and global climate models, objective cyclone identification methods were developed and applied to these data sets. Due to the large amount of investigation methods combined with the variety of different datasets, a multitude of results exist, not only for the recent climate period but also for the next century, assuming anthropogenic changed conditions. Different thresholds, different physical quantities, and considerations of different atmospheric vertical levels add to a picture that is difficult to combine into a common view of cyclones, their variability and trends, in the real world and in GCM studies. Thus, this paper will give a comprehensive review of the actual knowledge on climatologies of mid-latitude cyclones for the Northern and Southern Hemisphere for the present climate and for its possible changes under anthropogenic climate conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital signal processing (DSP) aims to extract specific information from digital signals. Digital signals are, by definition, physical quantities represented by a sequence of discrete values and from these sequences it is possible to extract and analyze the desired information. The unevenly sampled data can not be properly analyzed using standard techniques of digital signal processing. This work aimed to adapt a technique of DSP, the multiresolution analysis, to analyze unevenly smapled data, to aid the studies in the CoRoT laboratory at UFRN. The process is based on re-indexing the wavelet transform to handle unevenly sampled data properly. The was efective presenting satisfactory results

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the cosmology of the vacuum energy decaying into cold dark matter according to thermodynamics description of Alcaniz & Lima. We apply this model to analyze the evolution of primordial density perturbations in the matter that gave rise to the first generation of structures bounded by gravity in the Universe, called Population III Objects. The analysis of the dynamics of those systems will involve the calculation of a differential equation system governing the evolution of perturbations to the case of two coupled fluids (dark matter and baryonic matter), modeled with a Top-Hat profile based in the perturbation of the hydrodynamics equations, an efficient analytical tool to study the properties of dark energy models such as the behavior of the linear growth factor and the linear growth index, physical quantities closely related to the fields of peculiar velocities at any time, for different models of dark energy. The properties and the dynamics of current Universe are analyzed through the exact analytical form of the linear growth factor of density fluctuations, taking into account the influence of several physical cooling mechanisms acting on the density fluctuations of the baryonic component of matter during the evolution of the clouds of matter, studied from the primordial hydrogen recombination. This study is naturally extended to more general models of dark energy with constant equation of state parameter in a flat Universe

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel strategy to handle divergences typical of perturbative calculations is implemented for the Nambu-Jona-Lasinio model and its phenomenological consequences investigated. The central idea of the method is to avoid the critical step involved in the regularization process, namely, the explicit evaluation of divergent integrals. This goal is achieved by assuming a regularization distribution in an implicit way and making use, in intermediary steps, only of very general properties of such regularization. The finite parts are separated from the divergent ones and integrated free from effects of the regularization. The divergent parts are organized in terms of standard objects, which are independent of the ( arbitrary) momenta running in internal lines of loop graphs. Through the analysis of symmetry relations, a set of properties for the divergent objects are identified, which we denominate consistency relations, reducing the number of divergent objects to only a few. The calculational strategy eliminates unphysical dependencies of the arbitrary choices for the routing of internal momenta, leading to ambiguity-free, and symmetry-preserving physical amplitudes. We show that the imposition of scale properties for the basic divergent objects leads to a critical condition for the constituent quark mass such that the remaining arbitrariness is removed. The model becomes predictive in the sense that its phenomenological consequences do not depend on possible choices made in intermediary steps. Numerical results are obtained for physical quantities at the one-loop level for the pion and sigma masses and pion-quark and sigma-quark coupling constants.