884 resultados para Photovoltaic (PV) energy
Resumo:
This paper presents a distributed communication based active power curtailment (APC) control scheme for grid connected photovoltaic (PV) systems to address voltage rise. A simple distribution feeder model is presented and simulated using MATLAB. The resource sharing based control scheme proposed is shown to be effective at reducing voltage rise during times of peak generation and low load. Simulations also show the even distribution of APC using simple communications. Simulations demonstrate the versatility of the proposed control method under major communication failure conditions. Further research may lead to possible applications in coordinated electric vehicle (EV) charging.
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
This paper critically examines research on consumer attitudes and behavior towards solar photovoltaic (PV) and renewable energy technology in Australia. The uptake of renewable energy technology by residential consumers in Australia in the past decade has transformed the electricity supply and demand paradigm. Thus, this paper reviews Australian research on consumer behavior, understanding and choices in order to identify gaps in knowledge. As the role of the consumer transforms there is a critical need to understand the ways consumers may respond to future energy policies to mitigate unforeseen negative social and economic consequence of programs designed to achieve positive environmental outcomes.
Resumo:
Significant increase in installation of rooftop Photovoltaic (PV) in the Low-Voltage (LV) residential distribution network has resulted in over voltage problems. Moreover, increasing peak demand creates voltage dip problems and make voltage profile even worse. Utilizing the reactive power capability of PV inverter (RCPVI) can improve the voltage profile to some extent. Resistive caharcteristic (higher R/X ratio) limits the effectiveness of reactive power to provide voltage support in distribution network. Battery Energy Storage (BES), whereas, can store the excess PV generation during high solar insolation time and supply the stored energy back to the grid during peak demand. A coordinated algorithm is developed in this paper to use the reactive capability of PV inverter and BES with droop control. Proposed algorithm is capable to cater the severe voltage violation problem using RCPVI and BES. A signal flow is also mentioned in this research work to ensure smooth communication between all the equipments. Finally the developed algorithm is validated in a test distribution network.
Resumo:
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
Resumo:
This paper describes part of an engineering study that was undertaken to demonstrate that a multi-megawatt Photovoltaic (PV) generation system could be connected to a rural 11 kV feeder without creating power quality issues for other consumers. The paper concentrates solely on the voltage regulation aspect of the study as this was the most innovative part of the study. The study was carried out using the time-domain software package, PSCAD/EMTDC. The software model included real time data input of actual measured load and scaled PV generation data, along with real-time substation voltage regulator and PV inverter reactive power control. The outputs from the model plot real-time voltage, current and power variations throughout the daily load and PV generation variations. Other aspects of the study not described in the paper include the analysis of harmonics, voltage flicker, power factor, voltage unbalance and system losses.
Resumo:
Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.
Resumo:
Building integrated photovoltaic (BIPV) applications are gaining widespread popularity. The performance of any given BIPV system is dependent on prevalent meteorological factors, site conditions and system characteristics. Investigations pertaining to the performance assessment of photovoltaic (PV) systems are generally confined to either controlled environment-chambers or computer-based simulation studies. Such investigations fall short of providing a realistic insight into how a PV system actually performs real-time. Solar radiation and the PV cell temperature are amongst the most crucial parameters affecting PV output. The current paper deals with the real-time performance assessment of a recently commissioned 5.25 kW, BIPV system installed at the Center for Sustainable Technologies, Indian Institute of Science, Bangalore. The overall average system efficiency was found to be 6% for the period May 2011-April 2012. This paper provides a critical appraisal of PV system performance based on ground realities, particularly characteristic to tropical (moderate) regions such as Bangalore, India. (C) 2013 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.
Resumo:
Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.
Resumo:
Renewable energy is high on international and national agendas. Currently, grid-connected photovoltaic (PV) systems are a popular technology to convert solar energy into electricity. Existing PV panels have a relatively low and varying output voltage so that the converter installed between the PVs and the grid should be equipped with high step-up and versatile control capabilities. In addition, the output current of PV systems is rich in harmonics which affect the power quality of the grid. In this paper, a new multi-stage hysteresis control of a step-up DC-DC converter is proposed for integrating PVs into a single-phase power grid. The proposed circuitry and control method is experimentally validated by testing on a 600W prototype converter. The developed technology has significant economic implications and could be applied to many distributed generation (DG) systems, especially for the developing countries which have a large number of small PVs connected to their single-phase distribution network.
Resumo:
A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.
Resumo:
Cyber-attacks against Smart Grids have been found in the real world. Malware such as Havex and BlackEnergy have been found targeting industrial control systems (ICS) and researchers have shown that cyber-attacks can exploit vulnerabilities in widely used Smart Grid communication standards. This paper addresses a deep investigation of attacks against the manufacturing message specification of IEC 61850, which is expected to become one of the most widely used communication services in Smart Grids. We investigate how an attacker can build a custom tool to execute man-in-the-middle attacks, manipulate data, and affect the physical system. Attack capabilities are demonstrated based on NESCOR scenarios to make it possible to thoroughly test these scenarios in a real system. The goal is to help understand the potential for such attacks, and to aid the development and testing of cyber security solutions. An attack use-case is presented that focuses on the standard for power utility automation, IEC 61850 in the context of inverter-based distributed energy resource devices; especially photovoltaic (PV) generators.
Resumo:
This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system. © 2016 Springer International Publishing. All rights are reserved.
Resumo:
The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.