999 resultados para Photosynthetic activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: Variation in photosynthetic activity of trees induced by climatic stress can be effectively evaluated using remote sensing data. Although adverse effects of climate on temperate forests have been subjected to increased scrutiny, the suitability of remote sensing imagery for identification of drought stress in such forests has not been explored fully. Aim: To evaluate the sensitivity of MODIS-based vegetation index to heat and drought stress in temperate forests, and explore the differences in stress response of oaks and beech. Methods: We identified 8 oak and 13 beech pure and mature stands, each covering between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI decline to be used as the response variable indicative of environmental stress. Neural Networks-based regression modelling was then applied to identify the climatic variables that best explain observed NDVI declines. Results: Tested variables explained 84–97% of the variation in NDVI, whilst air temperature-related climate extremes were found to be the most influential. Beech showed a linear response to the most influential climatic predictors, while oak responded in a unimodal pattern suggesting a better coping mechanism. Conclusions: MODIS NDVI has proved sufficiently sensitive as a stand-level indicator of climatic stress acting upon temperate broadleaf forests, leading to its potential use in predicting drought stress from meteorological observations and improving parameterisation of forest stress indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial–interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies – that is, differences from the pre-industrial (PI) control climate – from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0–1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In reforesting companies (cellulose industry), eucalyptus is usually cultivated in small plastic containers (50 mL). As seedlings remain for about 120 days in these containers-until transplantation-their roots become space restricted, with consequent limitations in water and nutrient absorption. These restrictions may lead to plant stress, decreasing productivity. In this work, we used the photoacoustic technique to evaluate the photosynthetic activity of Eucalyptus grandis, E. urophylla and E. urograndis seedlings subjected to this limited space availability, seeking a correlation with morphological parameters and fluorescence measurements in these seedlings. Photoacoustic, fluorescence, and morphological analysis were conducted every 15 days, from 45 to 120 days after sowing. Fluorescence and photosynthetic rate were evaluated in vivo and in situ, the latter one using the open photoacoustic technique. Data show that root dry matter diminished markedly at 90 and 120 days after sowing; this behavior showed a high correlation with the gas exchange component of the photoacoustic signal, as well as with the fluorescence ratio Fv/Fm. These results indicate that the soil volume of the container becomes insufficient for the roots after 90 days, probably leading to a nutritional deficiency in plants, which explains the decrease observed in the photosynthetic rate of seedlings. (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work demonstrates the usefulness of the Open Photoacoustic Cell Technique to study the effects of irradiance and temperature on photosynthesis. bl vivo and ill situ photosynthetic induction measurements were performed in three different species of eucalyptus plants (E. grandis, E. urophylla, and E, urograndis) previously dark-adapted at different temperatures. Photosynthetic activity curves were built as a function of light intensity, indicating the occurrence of photosynthesis saturation. E. urograndis presented higher photosynthetic activity than the other species, especially at low temperature, indicating its tolerance to stress conditions. The incidence of background saturation light of various intensities allowed the irt situ study of photoinhibition in eucalyptus plants through open photoacoustics. (C) 2001 MAIK Nauka/Interperiodica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we study the photosynthetic induction in Eucalyptus urograndis leaves using the Open Photoacoustic Cell Technique. In vivo and in situ measurements were performed in leaves of four months-old E. urograndis seedlings and C041 cuttings previously dark-adapted for at least 10 h. Experimental results for the gas exchange component of the photoacoustic (PA) signal are interpreted considering that a gas uptake component would have a phase angle nearly opposite to that of the oxygen evolution component. Analysis of the photosynthetic induction data shows that seedlings present a net oxygen evolution before cuttings, but cuttings reach a higher steady-state photosynthetic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivou-se, neste trabalho, avaliar o efeito da aplicação de herbicidas em pós-emergência sobre a eficiência fotoquímica de duas cultivares de soja (M-SOY 7908 RR e M-SOY 8001). O delineamento experimental utilizado foi em blocos ao acaso, com quatro repetições. Os tratamentos constaram da aplicação de herbicidas isolados e em misturas: lactofen, glyphosate, lactofen + chlorimuron-ethyl, chlorimuron-ethyl + imazethapyr, chlorimuron-ethyl + bentazon, glyphosate + imazethapyr, lactofen + chlorimuron-ethyl + imazethapyr e lactofen + chlorimuron-ethyl + imazethapyr/haloxyfop-methyl. Além disso, foram mantidas duas testemunhas sem aplicação de herbicida. As avaliações foram realizadas aos 4; 11; 18; 25 e 32 dias após aplicação dos herbicidas (DAA) no primeiro ano, e aos 6, 14, 21, 28 e 35 DAA, no segundo. A cultivar M-SOY 8001 foi suscetível à aplicação dos herbicidas, principalmente às misturas contendo lactofen + chlorimuron-ethyl e lactofen + chlorimuron-ethyl + imazethapyr + haloxifop-methyl, os quais provocaram redução no rendimento quântico máximo do PSII (Fv/Fm). As duas cultivares apresentaram suscetibilidade aos herbicidas quando tratados com lactofen aplicado isolado e nas misturas lactofen + chlorimuron-ethyl, chlorimuron-ethyl + imazethapyr, lactofen + chlorimuron-ethyl + imazethapyr e lactofen + chlorimuron-ethyl + imazethapyr + haloxifop-methyl com redução nos teores de clorofila, estimados pelo Medidor Portátil de Clorofilas. Os danos foram reversíveis, desaparecendo gradativamente com a idade das plantas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m(-3) noted as N-50, N-100, N-150, N-200, N-250, and N-300, respectively), applied through the fertirrigation technique. N-250 and N-300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coffea arabica L. is considered to be sensitive to low temperatures throughout its life cycle. In some Brazilian regions, seedling production occurs under shade conditions and during the winter, with average temperatures of around 10 °C. The formation and functioning of the photosynthetic apparatus are strongly controlled by temperature. This study aimed to assess the changes that occurred in pigment contents, lipid peroxidation and variables of chlorophyll a fluorescence during the greening process of coffee seedlings submitted to chilling. Results indicate that saturation of the photosynthetic activity of coffee seedlings occurred before saturation of the accumulation of chloroplastid pigments. Pigment accumulation during the greening process is far beyond the metabolic needs for the maintenance of photosynthetic activity, more specifically of photosystem II. Coffee seedlings attained a quantum yield equivalent to that of the control with approximately half the chlorophyll a and b contents and around 40% of the carotenoid. Low temperature decreases the metabolism of seedlings, consequently reducing free radical production and lipid peroxidation. The chilling temperature (10 °C) used inhibited the accumulation of chloroplast pigments, in turn altering the capacity of the photosynthetic tissue of etiolated coffee seedlings to capture and transfer photon energy to the photosystem II reaction centre. These alterations were better demonstrated by O-J-I-P chlorophyll a fluorescence transients, rather than F v/F m and F v/F 0 ratios. © 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metabolic effects caused by hydric deficiency (HD) on Eucalyptus grandis clones were assessed by an experiment where plants were cultivated in four blocks. The first was the control block, normally irrigated, whereas the other three blocks were submitted to cycles of hydric deficiency. Analysis of photosynthetic efficiency, enzymatic activity of antioxidant response system, level of pigments and L-proline concentration were performed to evaluate the HD effects. Results showed that HD altered some parameters related to photosynthetic activity, pigments accumulation, proline and enzymatic activity. Clone 433 of E. grandis presented higher response ability to HD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of selective herbicides to control weeds has caused different responses in cultivars of sugar cane, and some products affect physiological characteristics and reduce the photosynthetic activity. This study aimed to evaluate the physiological traits in cultivars of sugar cane under the effect of applying post-emergence herbicides. The test was developed in Jau, SP. The experimental design was randomized blocks in factorial scheme 5 x 4 (cultivar x herbicide) with four replications. SP81-3250, RB855156, RB855453, RB867515, IACSP95-5000 were grown in this studied. Herbicides clomazone (1200 g i.a.ha-1); commercial mixture of clomazone + ametryn (1000 + 1500 g i.a.ha-1) and ametryn (3000 g i.a.ha-1) and a control were applied at 30 days after planting. Cultivars IACSP95-5000 and RB867515 were less affected physiologically and can be considered selective to these herbicides. The application of clomazone and ametryn affected negatively the traits maximum photochemical efficiency of photosystem II (Fv/Fm), SPAD index and photosynthetic pigments, but the mixture of these herbicides caused higher reductions, indicating to be the more aggressive to the cultivars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)