81 resultados para Photosphere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use images of high spatial, spectral, and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the coupling between wave phenomena observed at numerous heights in the solar atmosphere. Analysis of 4170 Å continuum images reveals small-scale umbral intensity enhancements, with diameters ~0."6, lasting in excess of 30 minutes. Intensity oscillations of ˜3 minutes are observed to encompass these photospheric structures, with power at least three orders of magnitude higher than the surrounding umbra. Simultaneous chromospheric velocity and intensity time series reveal an 87?±8? out-of-phase behavior, implying the presence of standing modes created as a result of partial wave re?ection at the transition region boundary. We ?nd a maximum waveguide inclination angle of˜40? between photospheric and chromospheric heights, combined with a radial expansion factor of <76%. An average blueshifted Doppler velocity of ˜1.5 km s-1, in addition to a time lag between photospheric and chromospheric oscillatory phenomena, con?rms the presence of upwardly propagating slow-mode waves in the lower solar atmosphere. Propagating oscillations in EUV intensity are detected in simultaneous coronal fan structures, with a periodicity of 172±17 s and a propagation velocity of 45±7 km s-1. Numerical simulations reveal that the damping of the magnetoacoustic wave trains is dominated by thermal conduction. The coronal fans are seen to anchor into the photosphere in locations where large-amplitude umbral dot (UD) oscillations manifest. Derived kinetic temperature and emission measure time series display prominent outof-phase characteristics, and when combined with the previously established sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal counterparts of the upwardly propagating magnetoacoustic slow modes detected in the lower solar atmosphere. Thus, for the ?rst time, we reveal how the propagation of 3 minute magnetoacoustic waves in solar coronal structures is a direct result of amplitude enhancements occurring in photospheric UDs.photospheric UDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the cases, when distance and epoch of discovery do not allow a direct approach. To study the circumstellar environment of SN2011fe we have obtained high-resolution spectroscopy of SN2011fe on 12 epochs, from 8 to 86 days after the estimated date of explosion, targeting in particular at the time evolution of CaII and NaI. Three main absorption systems are identified from CaII and NaI, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The Galactic and host galaxy reddening, deduced from the integrated equivalent widths (EW) of the NaI lines are E(B-V)=0.011+/-0.002 and E(B-V)=0.014+/-0.002 mag, respectively. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm HI line at the projected SN position (~180 km/s). During the ~3 months covered by our observations, its EW changed by 15.6+/-6.5 mA. This small variation is shown to be compatible with the geometric effects produced by therapid SN photosphere expansion coupled to the patchy fractal structure of the ISM. The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a Type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate-luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D = 21.6 ± 1.1 Mpc. The produced nickel-mass is estimated to be ∼0.020 ± 0.004 M⊙. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values of the total energy as ∼0.48 × 1051 erg, the ejected mass as ∼11.5 M⊙, and the initial radius as ∼287 R⊙.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfvén waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfvén waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfvén waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s-1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s-1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the muram code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s-1 was found in the simulated G-band images and an average of 1.8 km s-1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ˜4 s between layers of the simulated data set were established and values of ˜29 s observed between G-band and Ca ii K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: In this paper we aim to investigate the evolution of plasmaproperties and Stokes parameters in photospheric magnetic bright pointsusing 3D magneto-hydrodynamical simulations and radiative diagnostics ofsolar granulation.

Methods: Simulated time-dependent radiationparameters and plasma properties were investigated throughout theevolution of a bright point. Synthetic Stokes profiles for the FeI630.25 nm line were calculated, which also allowed the evolution of theStokes-I line strength and Stokes-V area and amplitude asymmetries to beinvestigated.

Results: Our results are consistent withtheoretical predictions and published observations describing convectivecollapse, and confirm this as the bright point formation process.Through degradation of the simulated data to match the spatialresolution of SOT, we show that high spatial resolution is crucial forthe detection of changing spectro-polarimetric signatures throughout amagnetic bright point's lifetime. We also show that the signaturedownflow associated with the convective collapse process tends towardszero as the radiation intensity in the bright point peaks, because ofthe magnetic forces present restricting the flow of material in the fluxtube.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1-m Solar Telescope(SST), to study EB events on the solar disk and at the limb. Both datasets show that EBs are connected to the foot-points of forming chromospheric jets. The limb observations show that a bright structure in the H$\alpha$ blue wing connects to the EB initially fuelling it,leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of H$\alpha$. In the disk dataset, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame.The EB then splits into two, with associated brightenings in the inter-granular lanes (IGLs). Micro-jets are then observed, extending to500 km with a lifetime of a few minutes. Observed velocities of themicro-jets are approximately 5-10 km s$^{-1}$, while their chromospheric counterparts range from 50-80 km s$^{-1}$. MURaM simulations of quiet Sun reconnection show that micro-jets with similar properties to that of the observations follow the line of reconnection in the photosphere,with associated H$\alpha$ brightening at the location of increased temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study properties of intensity fluctuations in NOAA Active Region 11250 observed on 13 July 2011 starting at UT 13:32. Included are data obtained in the EUV bands of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) as well as nearly simultaneous observations of the chromosphere made, at much higher spatial and temporal resolution, with the Rapid Oscillations in the Solar Atmosphere (ROSA) and Hydrogen-Alpha Rapid Dynamics camera (HARDcam) systems at the Dunn Solar Telescope. A complex structure seen in both the ROSA/HARDcam and SDO data sets comprises a system of loops extending outward from near the boundary of the leading sunspot umbra. It is visible in the ROSA Ca II K and HARDcam Hα images, as well as the SDO 304 Å, 171 Å and 193 Å channels, and it thus couples the chromosphere, transition region and corona. In the ground-based images the loop structure is 4.1 Mm long. Some 17.5 Mm, can be traced in the SDO/AIA data. The chromospheric emissions observed by ROSA and HARDcam appear to occupy the inner, and apparently cooler and lower, quarter of the loop. We compare the intensity fluctuations of two points within the structure. From alignment with SDO/HMI images we identify a point "A" near the loop structure, which sits directly above a bipolar magnetic feature in the photosphere. Point "B" is characteristic of locations within the loops that are visible in both the ROSA/HARDcam and the SDO/AIA data. The intensity traces for point A are quiet during the first part of the data string. At time ~ 19 min they suddenly begin a series of impulsive brightenings. In the 171 Å and 193 Å coronal lines the brightenings are localized impulses in time, but in the transition region line at 304 Å they are more extended in time. The intensity traces in the 304 Å line for point B shows a quasi-periodic signal that changes properties at about 19 min. The wavelet power spectra are characterized by two periodicities. A 6.7 min period extends from the beginning of the series until about 25 minutes, and another signal with period ~3 min starts at about 20 min. The 193 Å power spectrum has a characteristic period of 5 min, before the 20 min transition and a 2.5 min periodicity afterward. In the case of HARDcam Hα data a localized 4 min periodicity can be found until about 7 min, followed by a quiet regime. After ~20 min a 2.3 min periodicity appears. Interestingly a coronal loop visible in the 94 Å line that is centrally located in the AR, running from the leading umbra to the following polarity, at about time 20 min undergoes a strong brightening beginning at the same moment all along 15 Mm of its length. The fact that these different signals all experience a clear-cut change at time about 20 min suggests an underlying organizing mechanism. Given that point A has a direct connection to the photospheric magnetic bipole, we conjecture that the whole extended structure is connected in a complex manner to the underlying magnetic field. The periodicities in these features may favor the wave nature rather than upflows and interpretations will be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-frequency fluctuations are observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument (Jess et al. 2010, Solar Phys, 261, 363) at the Dunn Solar Telescope. This can produce simultaneous observations in up to six channels, at different heights in the photosphere and chromosphere, at an unprecedentedly high cadence of 0.5 seconds, and at a spatial resolution of 100 km after photometrically correct speckle reconstruction. Here we concentrate on observations at two levels. The first is in the G-band of the CH radical at 4305.5Å, bandpass 9.2Å, with height of formation z <250 km at a cadence of 0.525 sec corresponding to Nyquist frequency 950 mHz. The second is in the Ca II K-line core at 3933.7Å, bandpass 1.0Å, with height of formation z <1300 km, and cadence 4.2 sec giving Nyquist frequency 120 mHz. The data span 53 min, and the maximum field of view is 45 Mm. The data were taken on 28 May 2009 in internetwork and network near disk center. Using both Fourier and Morlet wavelet methods we find evidence in the G-band spectra for intensity fluctuations above noise out to frequencies f >> 100 mHz. The K-line signal is noisier and is seen only for f <50 mHz. With wavelet techniques we find that G-band spectral power with 20 <f <100 mHz is clearly concentrated in the intergranular lanes and especially at the locations of magnetic elements indicated by G-band bright points. This wavelet power is highly intermittent in time. By cross-correlating the data we find that pulses of high-frequency G-band power in the photosphere tend to be followed by increases in K-line emission in the chromosphere with a time lag of about 2 min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent band passes were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82,and 15.°97 between the 4170 Å continuum–G-band,G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 Wm‑2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behavior or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of Ellerman bombs (EBs), small-scale brightenings in the Hα line wings, have proved difficult to establish because their size is close to the spatial resolution of even the most advanced telescopes. Here, we aim to infer the size and lifetime of EBs using high-resolution data of an emerging active region collected using the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations of the Solar Atmosphere (ROSA) instruments as well as the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We develop an algorithm to track EBs through their evolution, finding that EBs can often be much smaller (around 0.3″) and shorter-lived (less than one minute) than previous estimates. A correlation between G-band magnetic bright points and EBs is also found. Combining SDO/HMI and G-band data gives a good proxy of the polarity for the vertical magnetic field. It is found that EBs often occur both over regions of opposite polarity flux and strong unipolar fields, possibly hinting at magnetic reconnection as a driver of these events.The energetics of EB events is found to follow a power-law distribution in the range of a nanoflare (1022-25 ergs).