190 resultados para Photosensitizer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The entrapment of hematoporphyrin IX (Hp IX) in silica by means of a microemulsion resulted in silica spheres of 33 +/- 6 nm. The small size, narrow size distribution and lack of aggregation maintain Hp IX silica nanospheres stable in aqueous solutions for long periods and permit a detailed study of the entrapped drug by different techniques. Hp IX entrapped in the silica matrix is accessed by oxygen and upon irradiation generates singlet oxygen which diffuses very efficiently to the outside solution. The Hp IX entrapped in the silica matrix is also reached by iron(II) ions, which causes quenching of the porphyrin fluorescence emission. The silica matrix also provides extra protection to the photosensitizer against interaction with BSA and ascorbic acid, which are known to cause suppression of singlet oxygen generation by the Hp IX free in solution. Therefore, the incorporation of Hp IX molecules into silica nanospheres increased the potential of the photosensitizer to perform photodynamic therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, structural aspects, pharmacological assays, and in vitro photoinduced cytotoxic properties of [Ru(NO)(ONO)(pc)] (pc = phthalocyanine) are described. Its biological effect on the B16F10 cell line was studied in the presence and absence of visible light irradiation. At comparable irradiation levels, [Ru(NO) (ONO)(pc)] was more effective than [Ru(pc)] at inhibiting cell growth, suggesting that occurrence of nitric oxide release following singlet oxygen production upon light irradiation may be an important mechanism by which the nitrosyl ruthenium complex exhibits enhanced biological activity in cells. Following visible light activation, the [Ru(NO)(ONO)(pc)] complex displayed increased potency in B16F10 cells upon modifications to the photoinduced dose; indeed, enhanced potency was detected when the nitrosyl ruthenium complex was encapsulated in a drug delivery system. The liposome containing the [Ru(NO)(ONO)(pc)] complex was over 25% more active than the corresponding ruthenium complex in phosphate buffer solution. The activity of the complex was directly proportional to the ruthenium amount present inside the cell, as determined by inductively coupled plasma mass spectroscopy. Flow cytometry analysis revealed that the photocytotoxic activity was mainly due to apoptosis. Furthermore, the vasorelaxation induced by [Ru(NO)(ONO)(pc)], proposed as NO carrier, was studied in rat isolated aorta. The observed vasodilation was concentration-dependent. Taken together, the present findings demonstrate that the [Ru(NO)(ONO)(pc)] complex induces vascular relaxation and could be a potent anti-tumor agent. Nitric oxide release following singlet oxygen production upon visible light irradiation on a nitrosyl ruthenium complex produces two radicals and may elicit phototoxic responses that may find useful applications in photodynamic therapy. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under continuous photolysis at 675 nm, liposomal zinc phthalocyanine associated with nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO](3+) showed the detection and quantification of nitric oxide (NO) and singlet oxygen ((1)O(2)) release. Photophysical and photochemical results demonstrated that the interaction between the nitrosyl ruthenium complex and the photosensitizer can enable an electron transfer process from the photosensitizer to the nitrosyl ruthenium complex which leads to NO release. Synergistic action of both photosensitizers and the nitrosyl ruthenium complex results in the production of reactive oxygen species and reactive nitrogen species, which is a potent oxidizing agent to many biological tissues, in particular neoplastic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm(2) and power density of 45 mW/cm(2). Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured drug delivery systems (NDDS), such as liposomes, represent a growing area in biomedical research. These microheterogeneous media can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. The photophysical properties of a silicon derivative of tribenzonaphthoporphyrazinato (Si-tri-PcNc) incorporated into liposome were studied by steady-state techniques, time-resolved fluorescence and laser flash photolysis. All the spectroscopy measurements performed allowed us to conclude that Si-tri-PcNc in liposome is a promising NDDS for PDT The in vitro experiments with liposomal NDDS showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 1 mu M of photosensitizer concentration and 10.0 J/cm(2) of light. These conditions are sufficient to kill about 80% of the cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unloaded microspheres were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(epsilon-caprolactone) (PCL) polymers using the emulsification-solvent evaporation method (EE). The study was conducted to determine the ideal polymeric composition and ideal molecular weight for the microspheres preparation to be used as a Drug Delivery System (DDS) for cancer therapy. In this work, NzPC, a new photosensitizer, has been investigated when incorporated into microspheres of PHBHV/PCL evaluating its application for Photodynamic Therapy (PDT) of neoplastic tissue. The biodegradation studies were conducted to analyze the effects of the incorporation of the NzPC and also to determine the release profiles in vitro condition. We also evaluated the dark toxicity and the photobiological effect of the PHBHV-PCL microspheres in cutaneous melanoma cell line (B-16-A1) used as a biological neoplastic medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photophysical properties of porphyrins in aqueous solutions are strongly affected by aggregation. One possible solution to this problem is to encapsulate the porphyrin into polymeric spheres, to provide an environment where the photosensitizer can be administered in its monomeric form in such treatments as photodynamic therapy. Here we report the microencapsulation of the meso-tetrakis(4-sulphonatophenyl) porphyrin (TPPS4) photosensitizer by the ultrasonic spray-drying technique. The encapsulated TPPS4 was morphologically characterized by scanning electron microscopy, and its photophysical properties were studied and compared with those of a physical blend of dextrin and TPPS4. We Successfully encapsulated TPPS4 into dextrin microspheres, and the encapsulated photosensitizer displays higher luminescence intensity than that of the prepared physical blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porphyrins are currently used in photodynamic therapy as photosensitizers. In this paper we studied the interaction of two charged porphyrins, 5, 10, 15, 20-mesotetrakis(N-metyl-4-pyridyl) porphyrin, (TMPyP/chloride salt) cationic, and 5, 10, 15, 20-meso-tetrakis(sulfonatophenyl) porphyrin, (TPPS(4)/sodium salt) anionic, nanoassembled in phospholipid Langmuir monolayers and Langmuir-Blodgett films. Furthermore, we used chitosan to mediate the interaction between the porphyrins and the model membrane, aiming to understand the role of the polysaccharide in a molecular level. The effect of the interaction of the photosensitizers on the fluidity of the lipid monolayer was investigated by using dilatational surface elasticity. We also used photoluminescence (PL) spectroscopy to identify the porphyrins adsorbed in the phospholipid films. We observed an expansion of the monolayer promoted by the adsorption of the porphyrins into the lipid-air interface which was more pronounced in the case of TMPyP, as a consequence of a strong electrostatic interaction with the anionic monolayer. The chitosan promoted a higher adsorption of the porphyrins on the phospholipid monolayers and enabled the porphyrin to stay in its monomeric form (as confirmed by PL spectroscopy), thus demonstrating that chitosan can be pointed out as a potential photosensitizer delivery system in photodynamic therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between a hydrophobically modified 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin and three phospholipids: two negatively charged, DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and DMPG (the sodium salt of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and a zwitterionic DMPC (dimyristoyl-sn-glycero-phosphatidylcholine), were studied by means of surface pressure isotherms and spectroscopic methods. The interaction results in partial or total metallation of the porphyrin with zinc ions in the presence of negatively charged phospholipids, as attested by UV-vis and luminescence spectroscopy of the transferred films. In the presence of the zwitterionic phospholipid no insertion of zinc ion in the porphyrin ring is detected. These results are relevant for the understanding of photosensitizer-lipid-carrier binding for use in photodynamic therapy. (C) 2010 Elsevier Inc. All rights reserved.