969 resultados para Photon correlation spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer nanocomposites offer the potential to create a new type of hybrid material with unique thermal, optical, or electrical properties. Understanding their structure, phase behavior, and dynamics is crucial for realizing such potentials. In this work we provide an experimental insight into the dynamics of such composites in terms of the temperature, wave vector, and volume fraction of nanoparticles, using multispeckle synchrotron x-ray photon correlation spectroscopy measurements on gold nanoparticles embedded in polymethylmethacrylate. Detailed analysis of the intermediate scattering functions reveals possible existence of an intrinsic length scale for dynamic heterogeneity in polymer nanocomposites similar to that seen in other soft materials like colloidal gels and glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of 1-alkylcarbonyloxymethylprodrugs of 5FU into poly(lactide-co-glycolide) nanoparticles using nanoprecipitation methods gave increased loading efficiencies over that obtained using the parent drug substance. SEM studies revealed spherical nanoparticles of around 200 nm in diameter, corresponding well with measurements made using photon correlation spectroscopy. The C-7 prodrug gave the best mean loading of 47.23%, which compared favourably to 3.68% loading achieved with 5FU. Loading efficiency was seen to follow the hydrophilic-lipophilic balance in the homologue series, where increases in lipophilicities alone were not good predictors of loading. Drug release, in terms of resultant 5FU concentration, was monitored using a flow-through dissolution apparatus. Cumulative drug release from nanoparticles loaded with the C-5 prodrug was linear over 6h, with approximately 14% of the total available 5FU dose released and with no evidence of a burst effect. The flux profile of the C-5-loaded nanoparticles showed an initial peak in flux in the first sampling interval, but became linear for the remainder of the release phase. C-7-loaded nanoparticles released considerably less (4% in 6 h) with a similar flux pattern to that seen with the C-5 prodrug. The C-9-loaded nanoparticles released less than 1% of the available 5FU over 6 h, with a similar zero-order profile. The C7 prodrug was deemed to be the prodrug of choice, achieving the highest loadings and releasing 5FU, following hydrolysis, in a zero-order fashion over a period of at least 6 h. Given the lack of burst effect and steady-state flux conditions, this nanoparticulate formulation offers a better dosing strategy for sustained intravenous use when compared to that arising from nanoparticles made by direct incorporation of 5FU. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The factors influencing the formation of water-in-134a-propellant microemulsions using the fluorinated ionic surfactants ammonium perfluorooctanoate, ammonium perfluoroheptanoate, and sodium perfluorooctanoate has been determined. None of the fluorinated ionic surfactants could be used to prepare clear, one-phase systems when used as sole surfactant, but they could be when combined with a short-chain fluoro- or hydrocarbon alcohol in surfactant:cosurfactant weight-mixing ratios (K(m)) in the range 1:2 to 2:1. When hydrocarbon alcohols were used this clear region extended over a wide range of compositions and was confirmed by means of photon correlation spectroscopy (PCS) to contain microemulsion droplets in the propellant-rich part of the phase diagram. PCS studies performed in the presence of the water-soluble drug terbutaline sulfate showed that it was possible to solubilize the drug within water-in-propellant microemulsion droplets. These studies confirm for the first time that it is possible to prepare water-in-propellant 134a microemulsions using fluorinated ionic surfactants and to solubilize water-soluble drugs within these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esferas de poliestireno foram obtidas através da polimerização do estireno sem a presença de emulsificante. A suspensão foi caracterizada por Espalhamento de Luz e Microscopia Eletrônica de Transmissão apresentando monodispersidade com tamanho em torno de 463 nm. O método de deposição vertical foi utilizado para preparar filmes em substratos de vidro a partir da suspensão de esferas. Filmes de opalas de alta qualidade foram obtidos e caracterizados por Espectroscopia de Reflectância, Microscopia Eletrônica de Varredura e Microscopia Óptica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HfO2-(3-glycidoxipropil)trimethoxisilane (GPTS) planar waveguides were prepared by a sol-gel route. A stable sol of Hafnia nanocrystals was prepared and characterized by photon correlation spectroscopy and high resolution transmission electron microscopy. The suspension was incorporated in GPTS host and the resulting sol was deposited on borosilicate substrates by the spin coating technique. Optical properties such as refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 632.8, 543.5, and 1550 nm by the prism coupling technique as a function of the HfO2 content. (C) 2000 American Institute of Physics. [S0003-6951(00)03348-9].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planar waveguides have been prepared on the ZrO2-(3-glycidiloxypropyl)trimethoxysilane (GPTS) system. Stable sols containing ZrO2 nanoparticles have been prepared and characterized by Photon Correlation Spectroscopy. The nanosized sol was embedded in (3-glycidoxipropyl)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The opticalparameters of the waveguides such as refractive index, thickness and propagating modes and attenuation coefficient were measured at 632.8. 543.5 and 1550 nm by the prism coupling technique as a function of the Zr02 content. The planar waveguides present thickness of a few microns and support well confined propagating modes. Er doped samples display weak and broad (δλ≈96nm) emission at 1.5 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)