988 resultados para Photon beams.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conversion coefficients from air kerma to ICRU operational dose equivalent quantities for ENEA’s realization of the X-radiation qualities L10-L35 of the ISO “Low Air Kerma rate” series (L), N10-N40 of the ISO “Narrow spectrum” series (N) and H10-H60 of the ISO “High Air-kerma rate” (H) series and two beams at 5 kV and 7.5 kV were determined by utilising X-ray spectrum measurements. The pulse-height spectra were measured using a planar high-purity germanium spectrometer (HPGe) and unfolded to fluence spectra using a stripping procedure then validate with using Monte Carlo generated data of the spectrometer response. HPGe portable detector has a diameter of 8.5 mm and a thickness of 5 mm. The entrance window of the crystal is collimated by a 0.5 mm thick Aluminum ring to an open diameter of 6.5 mm. The crystal is mounted at a distance of 5 mm from the Berillium window (thickness 25.4 micron). The Monte Carlo method (MCNP-4C) was used to calculate the efficiency, escape and Compton curves of a planar high-purity germanium detector (HPGe) in the 5-60 keV energy. These curves were used for the determination of photon spectra produced by the X-ray machine SEIFERT ISOVOLT 160 kV in order to allow a precise characterization of photon beams in the low energy range, according to the ISO 4037. The detector was modelled with the MCNP computer code and validated with experimental data. To verify the measuring and the stripping procedure, the first and the second half-value layers and the air kerma rate were calculated from the counts spectra and compared with the values measured using an a free-air ionization chamber. For each radiation quality, the spectrum was characterized by the parameters given in ISO 4037-1. The conversion coefficients from the air kerma to the ICRU operational quantities Hp(10), Hp(0.07), H’(0.07) and H*(10) were calculated using monoenergetic conversion coefficients. The results are discussed with respect to ISO 4037-4, and compared with published results for low-energy X-ray spectra. The main motivation for this work was the lack of a treatment of the low photon energy region (from a few keV up to about 60 keV).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The excitation spectrum is one of the fundamental properties of every spatially extended system. The excitations of the building blocks of normal matter, i.e., protons and neutrons (nucleons), play an important role in our understanding of the low energy regime of the strong interaction. Due to the large coupling, perturbative solutions of quantum chromodynamics (QCD) are not appropriate to calculate long-range phenomena of hadrons. For many years, constituent quark models were used to understand the excitation spectra. Recently, calculations in lattice QCD make first connections between excited nucleons and the fundamental field quanta (quarks and gluons). Due to their short lifetime and large decay width, excited nucleons appear as resonances in scattering processes like pion nucleon scattering or meson photoproduction. In order to disentangle individual resonances with definite spin and parity in experimental data, partial wave analyses are necessary. Unique solutions in these analyses can only be expected if sufficient empirical information about spin degrees of freedom is available. The measurement of spin observables in pion photoproduction is the focus of this thesis. The polarized electron beam of the Mainz Microtron (MAMI) was used to produce high-intensity, polarized photon beams with tagged energies up to 1.47 GeV. A "frozen-spin" Butanol target in combination with an almost 4π detector setup consisting of the Crystal Ball and the TAPS calorimeters allowed the precise determination of the helicity dependence of the γp → π0p reaction. In this thesis, as an improvement of the target setup, an internal polarizing solenoid has been constructed and tested. A magnetic field of 2.32 T and homogeneity of 1.22×10−3 in the target volume have been achieved. The helicity asymmetry E, i.e., the difference of events with total helicity 1/2 and 3/2 divided by the sum, was determined from data taken in the years 2013-14. The subtraction of background events arising from nucleons bound in Carbon and Oxygen was an important part of the analysis. The results for the asymmetry E are compared to existing data and predictions from various models. The results show a reasonable agreement to the models in the energy region of the ∆(1232)-resonance but large discrepancies are observed for energy above 600 MeV. The expansion of the present data in terms of Legendre polynomials, shows the sensitivity of the data to partial wave amplitudes up to F-waves. Additionally, a first, preliminary multipole analysis of the present data together with other results from the Crystal Ball experiment has been as been performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imaging of biological samples has been performed with a variety of techniques for example electromagnetic waves, electrons, neutrons, ultrasound and X-rays. Also conventional X-ray imaging represents the basis of medical diagnostic imaging, it remains of limited use in this application because it is based solely on the differential absorption of X-rays by tissues. Coherent and bright photon beams, such as those produced by third-generation synchrotron X-ray sources, provide further information on subtle X-ray phase changes at matter interfaces. This complements conventional X-ray absorption by edge enhancement phenomena. Thus, phase contrast imaging has the potential to improve the detection of structures on images by detecting those structures that are invisible with X-ray absorption imaging. Images of a weakly absorbing nylon fibre were recorded in in-line holography geometry using a high resolution low-noise CCD camera at the ESRF in Grenoble. The method was also applied to improve image contrast for images of biological tissues. This paper presents phase contrast microradiographs of vascular tree casts and images of a housefly. These reveal very fine structures, that remain invisible with conventional absorption contrast only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Commercial treatment planning systems employ a variety of dose calculation algorithms to plan and predict the dose distributions a patient receives during external beam radiation therapy. Traditionally, the Radiological Physics Center has relied on measurements to assure that institutions participating in the National Cancer Institute sponsored clinical trials administer radiation in doses that are clinically comparable to those of other participating institutions. To complement the effort of the RPC, an independent dose calculation tool needs to be developed that will enable a generic method to determine patient dose distributions in three dimensions and to perform retrospective analysis of radiation delivered to patients who enrolled in past clinical trials. Methods A multi-source model representing output for Varian 6 MV and 10 MV photon beams was developed and evaluated. The Monte Carlo algorithm, know as the Dose Planning Method (DPM), was used to perform the dose calculations. The dose calculations were compared to measurements made in a water phantom and in anthropomorphic phantoms. Intensity modulated radiation therapy and stereotactic body radiation therapy techniques were used with the anthropomorphic phantoms. Finally, past patient treatment plans were selected and recalculated using DPM and contrasted against a commercial dose calculation algorithm. Results The multi-source model was validated for the Varian 6 MV and 10 MV photon beams. The benchmark evaluations demonstrated the ability of the model to accurately calculate dose for the Varian 6 MV and the Varian 10 MV source models. The patient calculations proved that the model was reproducible in determining dose under similar conditions described by the benchmark tests. Conclusions The dose calculation tool that relied on a multi-source model approach and used the DPM code to calculate dose was developed, validated, and benchmarked for the Varian 6 MV and 10 MV photon beams. Several patient dose distributions were contrasted against a commercial algorithm to provide a proof of principal to use as an application in monitoring clinical trial activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foi proposta uma experiência na qual seria possível produzir um emaranhamento quântico de feixes de fótons com diferentes frequências, movendo-se em uma mesma direção, controlado por meio de um campo magnético externo. Nessa experiência, a interação entre o campo magnético e fótons é realizada por intermédio de elétrons, que interagem tanto com os fótons quanto com o campo magnético externo. Foi desenvolvida uma teoria que descreve processos físicos. Derivamos medidas de emaranhamento de informação e de Schmidt para um sistema geral de dois qubits e a medida residual para um sistema geral de três qubits. Usando a informação obtida da análise dos sistemas de dois e de três quase-fótons, calculamos medidas de emaranhamento. Criamos um programa para cálculo numérico, nesses casos, através do qual construímos gráficos de dependência das medidas de emaranhamentos em feixes de dois e de três fótons. Os resultados obtidos nos permitem ver como a medida de emaranhamento depende dos parâmetros, que caracterizam o sistema em questão. Por exemplo, se ambas as polarizações dos fótons coincidem, então, nenhum emaranhamento ocorre. O emaranhamento acontece apenas se as polarizações do fóton forem opostas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les néoplasies pulmonaires demeurent la première cause de décès par cancer au Québec représentant près de 6000 décès par année. Au cours des dernières années, la radiothérapie stéréotaxique d’ablation (SABR) s’est imposée comme un traitement alternatif à la résection anatomique pour les patients inopérables atteints d’un cancer pulmonaire non à petites cellules de stade précoce. Il s’agit d’une modalité de traitement qui permet d’administrer des doses élevées, typiquement 30-60 Gy en 1-8 fractions, dans le but de cibler précisément le volume de traitement tout en épargnant les tissus sains. Le Centre Hospitalier de l’Université de Montréal s’est muni en 2009 d’un appareil de SABR de fine pointe, le CyberKnife™ (CK), un accélérateur linéaire produisant un faisceau de photons de 6 MV dirigé par un bras robotisé, permettant d’administrer des traitements non-coplanaires avec une précision infra-millimétrique. Ce mémoire est dédié à la caractérisation de certains enjeux cliniques et physiques associés au traitement par CK. Il s’articule autour de deux articles scientifiques revus par les pairs. D’une part, une étude prospective clinique présentant les avantages de la SABR pulmonaire, une technique qui offre un excellent contrôle tumoral à long terme et aide au maintien de la qualité de vie et de la fonction pulmonaire. D’autre part, une étude de physique médicale illustrant les limites de l’acquisition d’images tomodensitométriques en auto-rétention respiratoire lors de la planification de traitement par CK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eleven papers dealing with photon beams from the accelerator, use of hydrogen bubble chambers and spark chambers, a storage ring for 10-Bev muons, muon beams and -p scattering experiments, mass analysis of highenergy accelerator beams, the search for intermediate bosons and heavy leptons, particle yields arising from decay of short-lived intermediate particles, and conjectures on the effects of Regge poles on Drell processes are included. Separate abstracts were prepared for the eleven papers. (D.C.W.).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 µm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 µm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The Calypso 4D Localization System gives the possibility to track the tumour during treatment, with no additional ionising radiation delivered. To monitor the patient continuously an array is positioned above the patient during the treatment. We intend to study, for various gantry angles, the attenuation effect of the array for 6- and 10 MV and flattening filter free (FFF) 6- and FFF 10 MV photon beams. Materials and methods: Measurements were performed using an ion chamber placed in a slab phantom positioned at the linac isocenter for 6 MV, 10 MV, FFF 6 MV and FFF 10 MV photon beams. Measurements were performed with and without array above the phantom for 0°, 10°, 20°, 40° and 50° beam angle for a True Beam STx linac, for 5×5 and 10×10 and 15×15 cm2 field size beams to evaluate the attenuation of the array. A VMAT treatment plan was measured using an ArcCheck with and without the array in the beam path. Results and discussion: Attenuation measured values were up to 3%. Attenuation values were between 1 and 2% with the exception of the 30°–50° gantry angles which were up to 3.3%. The ratio values calculated in the ArcCheck for relative dose and absolute dose 10 were both 1·00. Conclusion: Attenuation of the treatment beam by the Calypso array is within acceptable limits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the effects of niobium beam filtration on absorbed doses, on image density and contrast, and on photon spectra with conventional and high-frequency dental x-ray generators. Added niobium reduced entry and superficial absorbed doses in periapical radiography by 9% to 40% with film and digital image receptors, decreased the radiation necessary to produce a given image density on E-speed film and reduced image contrast on D- and E-speed films. As shown by increased half-value layers for aluminum, titanium, and copper and by pulse-height analyses of beam spectra, niobium increased average beam energy by 6% to 19%. Despite the benefits of adding niobium on patient dose reduction and on narrowing the beams' energy spectra, the beam can be overhardened. Adding niobium, therefore, strikes the best balance between radiation dose reduction and beam attenuation, with its risks of increased exposure times, motion blur, and diminished image contrast, when it is used at modest thicknesses (30 μm) and at lower kVp (70) settings. © 1995 Mosby-Year Book, Inc.