956 resultados para Photon Counting
Resumo:
This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.
Resumo:
Dependence of energy transfer parameters on excitation wavelength has been investigated in poly (methyl methacrylate) (PMMA) optical fibre preforms doped with C 540:Rh B dye mixture by studying the fluorescence intensity and the lifetime variations. A fluorescence spectrophotometer was used to record the excitation spectra of the samples for the emission wavelengths 495 and 580 nm. The fluorescence emission from the polymer rods was studied at four specific excitation wavelengths viz; 445, 465, 488 and 532 nm. The fluorescence lifetime of the donor molecule was experimentally measured in polymer matrix by time correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed for three excitation wavelengths. It was found that any change in the excitation wavelength leads to significant variations in the quenching characteristics, which in turn affect the calculated energy transfer parameters.
Resumo:
The thesis entitled: ‘Synthesis and Photochemistry of a few Olefin appended Dibenzobarrelenes and Bisdibenzobarrelenes’ is divided into 5 chapters.In Chapter 1, the fundamental concepts of Diels-Alder reaction, di-r:methane rearrangement and energy transfer process in organic photochemistry is discussed.Chapter 2 presents the synthesis of 9-olefin appended anthracenes and bisanthracenes. The target of synthesising various bridgehead olefin appended dibenzobarrelenes and some novel bisdibenzobarrelenes, led us to the synthesis of the appropriate alkenylanthracenes and bisanthracenes as precursor molecules. Diels-Alder reaction was the synthetic tool for the preparation of the target olefin appended dibenzobarrelenes and bisdibenzobarrelenes. This chapter attempts to throw light on our endeavours in synthesising the various 9-alkenylanthracenes and bisanthracenes.Chapter 3 deals with the synthesis of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Ever since the discovery of di-It-methane rearrangement dibenzobarrelenes, tailored with dijferent substituents at various positions have always been a tool to photochemists in unravelling the mechanisms of light induced reactions. Our intention of analysing the role of a It-moiety at the bridgehead position of the dibenzobarrelene, was synthetically envisaged via the Diels-Alder reaction. Bisdibenzobarrelenes were synthesised through tandem Diels-Alder reaction. Various alkenylanthracenes and bisanthracenes were employed as dienes and the dienophiles used were dimethyl acetylenedicarboxylate and dibenzoylacetylene. In this chapter, we report our venture in synthesising the various olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Chapter 4 describes the preliminary time-resolved fluorescence studies of some olefin appended dibenzobarrelenes and bisdibenzobarrelenes.To understand the primary and secondary physicochemical processes in a photochemical reaction it is necessary to characterise the excited states and the transient intermediates during their short lifetime. A number of methods developed on the basis of the physical properties of the transient species are available for their detection. Time-correlated single-photon counting technique has been utilised in the present study of the excited states of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. To understand the primary and secondary physicochemical processes in a photochemical reaction it is necessary to characterise the excited states and the transient intermediates during their short lifetime. A number of methods developed on the basis of the physical properties of the transient species are available for their detection. Time-correlated single-photon counting technique has been utilised in the present study of the excited states of olefin appended dibenzobarrelenes and bisdibenzobarrelenes.Chapter 5 portrays the photochemistry of olefin appended dibenzobarrelenes and bisdibenzobarrelenes. Dibenzocyclooctatetraene and dibenzosemibullvalene are the photoproducts obtained respectively through the singlet excited state and the triplet excited state of dibenzobarrelenes. Chemical literature shows evidences of the photoreactivity of dibenzobarrelenes generating both the singlet and triplet mediated photoproducts, in a single photoreaction. Our research target in synthesising various bridgehead olefin appended dibenzobarrelenes and bisdibenzobarrelenes, was based on the perception that olefins are eflicient triplet quenchers, thereby quenching intramolecularly the triplet excited state of the barrelenes. A It-moiety at the bridgehead position of the dibenzobarrelene, creates a tetra tr-methane system, which similar to a 6li—7l' or tri-tr-methane systems, could be the fertile ground for interesting photochemical rearrangements. Our attempts in deciphering the photochemistry of the olefin appended dibenzobarrelenes and bisdibenzobarrelenes is the substance of this chapter.
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
The photon statistics of the random laser emission of a Rhodamine B doped di-ureasil hybrid powder is investigated to evaluate its degree of coherence above threshold. Although the random laser emission is a weighted average of spatially uncorrelated radiation emitted at different positions in the sample, a spatial coherence control was achieved due to an improved detection configuration based on spatial filtering. By using this experimental approach, which also allows for fine mode discrimination and timeresolved analysis of uncoupled modes from mode competition, an area not larger than the expected coherence size of the random laser is probed. Once the spectral and temporal behavior of nonoverlapping modes is characterized, an assessment of the photon-number probability distribution and the resulting second-order correlation coefficient as a function of time delay and wavelength was performed. The outcome of our single photon counting measurements revealed a high degree of temporal coherence at the time of maximum pump intensity and at wavelengths around the Rhodamine B gain maximum.
Resumo:
In der vorliegenden Arbeit wurde die Fluoreszenzdynamik einzelner CdSe-Halbleiternanokristalle und isolierter Nanokristall/Farbstoff-Komplexe untersucht. Dazu wurde ein konfokales Mikroskop aufgebaut, mit dem Spektren und Zerfallskurven einzelner Fluorophore bei Raumtemperatur und tiefen Temperaturen bis zu 1.4 Kelvin gemessen werden konnten. Mit diesem Aufbau konnten erstmals Fluoreszenzlebenszeiten einzelner Nanokristalle mit der Methode des zeitkorrelierten Einzelphotonenzählens (timecorrelated single photon counting, TCSPC) bei Raumtemperatur und später auch bei tiefen Temperaturen bestimmt werden. Zur Auswertung der Daten wurden verschiedene Methoden entwickelt, um die Fluoreszenzdynamik aus den exponentiellen oder nicht-exponentiellen Zerfallskurven zu extrahieren. Die Interpretation der berechneten Ratenverteilung lässt auf eine Korrelation zwischen der Fluoreszenzintensität und der Fluoreszenzlebensdauer schließen, deren Ursache auf Quenchermoleküle zurückgeführt wird. Mit geringer werdender Fluoreszenzintensität zerfallen die Abklingkurven schneller und die Lebensdauern sind breiter verteilt. Messungen bei tiefen Temperaturen ermöglichte es zusätzlich die exzitonische Feinstruktur des Nanokristalls genauer zu Untersuchen. Hier zeigt sich eine deutliche Unterscheidung zwischen einer langsamen, temperaturabhängigen Zerfallskomponente (mit Zerfalssraten bis in den Mikrosekundenbereich) und einer schnellen, temperaturunabhängigen Zerfallsrate. Die gemessenen Ratenverteilungen bestätigten die berechneten theoretischen Zerfallsraten, jedoch auch weitere, mit bisherigen theoretischen Modellen nicht vereinbare, Raten. Schließlich wurden noch der Energietransfer zwischen Nanokristall-Farbstoffmolekül-Komplexen untersucht. Gemessene Abklingkurven der Nanokristall-Komponente bei 2 Kelvin wiesen gegenüber dem isolierten Nanokristall keine entsprechenden langsamen Zerfallsraten auf.
Resumo:
In dieser Arbeit wurden Untersuchungen zur Fluoreszenzdynamik und zum Mechanismus des Photobleichens einzelner Farbstoffmoleküle einer homologen Reihe von Rylentetracarbonsäurediimiden durchgeführt. Mit der Erweiterung des elektronischen π-Systems verringert sich die HOMO/LUMO-Energiedifferenz, so dass strahlungslose Relaxationsprozesse gemäß des Energielückengesetzes zunehmen. Die konfokale Einzelmolekülspektroskopie in Kombination mit zeitkorrelierter Einzelphotonenzählung ermöglicht es, Fluktuationen der inneren Konversionsrate zu detektieren. Der limitierende Faktor jedes Einzelmolekülexperiments ist die Photostabilität der Moleküle. Für die homologe Reihe konnten mindestens zwei Photobleichmechanismen identifiziert werden. Wenn Singulett-Sauerstoff durch Selbstsensibilisierung erzeugt werden kann, ist unter Luft die Photooxidation der wahrscheinlichste Mechanismus. Unter Ausschluss von Luftsauerstoff spielt die Bildung langlebiger Dunkelzustände eine entscheidende Rolle, die bevorzugt über höher angeregte Triplett- und Singulett-Zustände abläuft. Es wird angenommen, dass es sich hierbei um einen reversiblen Ionisierungsprozess handelt, bei dem das Radikal-Kation der Rylendiimide gebildet wird. Es konnte gezeigt werden, dass durch eine geeignete Wahl der Anregungsbedingungen die Dunkelzustandspopulierung verhindert und zugleich die Photostabilität der Fluorophore deutlich erhöht wird. Durch die Verknüpfung der beiden niedrigsten Homologen erhält man ein Donor-Akzeptor-Modellsystem, bei dem die Anregungsenergie mit hoher Effizienz vom Donor- auf den Akzeptor-Chromophor übertragen wird. In der Fluoreszenz einzelner Bichromophore wurden bei selektiver Anregung des Donors kollektive Auszeiten beobachtet, die durch effiziente Singulett-Triplett-Annihilation verursacht werden.
Resumo:
Increasing attention is being paid to the possible development of non-invasive tests for the assessment of the quality of fruits We propose a novel non-destructive method for the measurement of the internal optical properties of fruits and vegetables by means of time resolved reflectance spectroscopy in the visible and NIR range. A fully automated instrumentation for time-resolved reflectance measurements was developed It is based on mode-locked laser sources and electronics for time-correlated single photon counting, and provides a time-resolution of 120-160 ps The system was used to probe the optical properties of several species and varieties of fruits and vegetables in the red and NIR range (650-1000 nm). In most fruits, the absorption line shape is dominated by the absorption peak of water, centred around 970 nm Generally, the absorption spectra also show the spectral features typical of chlorophyll, with maximum at 675 nm In particular, for what concerns apples, variations in peak intensity are observed depending on the variety, the degree of ripeness as well as the position on the apple. For all the species and varieties considered, the transport scattering coefficient decreases progressively upon increasing the wavelength.
Resumo:
Increasing attention is being paid to the possible development of non-invasive tests for the assessment of the quality of Fruits. We propose a novel non-destructive method for the measurement of the internal optical properties of fruits and vegetables by means of lime-resolved reflectance spectroscopy in the visible and NIR range. A Fully automated instrumentation for time-resolved reflectance measurements was developed. It is based on mode-locked laser sources and electronics for time-correlated single photon counting, and provides a time-resolution of 120-160 ps. The system was used to probe the optical properties of several species and varieties of Fruits and vegetables in the red and NIR range (650-1000 nm). In most Fruits, the absorption line shape is dominated by the absorption peak of water, centred around 970 nm. Generally, the absorption spectra also show the spectral features typical of chlorophyll, with maximum at 675 nm. In particular, for what concerns apples, variations in peak intensity are observed depending on the variety, the degree of ripeness as well as the position on the apple. For all the species and varieties considered, the transport scattering coefficient decreases progressively upon increasing the wavelength.
Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms
Resumo:
We present a multichannel tomographic technique to detect fluorescent objects embedded in thick (6.4 cm) tissue-like turbid media using early-arriving photons. The experiments use picosecond laser pulses and a streak camera with single photon counting capability to provide short time resolution and high signal-to-noise ratio. The tomographic algorithm is based on the Laplace transform of an analytical diffusion approximation of the photon migration process and provides excellent agreement between the actual positions of the fluorescent objects and the experimental estimates. Submillimeter localization accuracy and 4- to 5-mm resolution are demonstrated. Moreover, objects can be accurately localized when fluorescence background is present. The results show the feasibility of using early-arriving photons to image fluorescent objects embedded in a turbid medium and its potential in clinical applications such as breast tumor detection.
Resumo:
Phenomena that can be observed for a large number of molecules may not be understood if it is not possible to observe the events on the single-molecule level. We measured the fluorescence lifetimes of individual tetramethylrhodamine molecules, linked to an 18-mer deoxyribonucleotide sequence specific for M13 DNA, by time-resolved, single-photon counting in a confocal fluorescence microscope during Brownian motion in solution. When many molecules were observed, a biexponential fluorescence decay was observed with equal amplitudes. However, on the single-molecule level, the fraction of one of the amplitudes spanned from 0 to unity for a collection of single-molecule detections. Further analysis by fluorescence correlation spectroscopy made on many molecules revealed a process that obeys a stretched exponential relaxation law. These facts, combined with previous evidence of the quenching effect of guanosine on rhodamines, indicate that the tetramethylrhodamine molecule senses conformational transitions as it associates and dissociates to a guanosine-rich area. Thus, our results reveal conformational transitions in a single molecule in solution under conditions that are relevant for biological processes.
Resumo:
This research sets out to build upon excited state o-azaxylylene cycloaddition. The mechanism behind the excitation and cycloaddition process of photogenerated o-azaxylylenes was determined experimentally. Time-correlated single-photon counting, steady-state spectroscopy, triplet quenching experiments, and quantum yield studies provided evidence suggesting that excited state intramolecular proton transfer is followed by intersystem crossing and stepwise addition to the tethered unsaturated pendant. In keeping with the principles of diversity oriented synthesis, a modular approach was taken to gain access to a diverse array of N,O,S-Polyheterocycles which were modified postphotochemically via Suzuki coupling to yield fused biaryls. Cycloaddition products, outfitted with halogens in the aromatic ring of the o-azaxylylene, proved to be reactive with a variety of boronic acids resulting in a rapid growth in structural complexity. A novel procedure was developed that utilized multiple o-azaxylylene cores in a photochemical cascade transformation yielding complex scaffolds of unprecedented topology. The photoprecursors were produced in a one-pot two-step sequence from commercially available starting materials, and upon irradiation yield structures containing up to five fused hetrocyclic rings, and showed complete diastereoselectivity.
Resumo:
Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state a alpha/0 > + beta/1 > can be prepared deterministically.
Resumo:
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)trans-6,13-dimethyl- 13-amino- 1,4,8,11 -tetraaza-cyclotetradecane (L-1) and 6-((anthracen-9-ylmethyl)-amino)trans-6,13 -dimethyl - 13 -amino- 1,4,8, 1 1-tetraaza-cyclotetradecane (L-2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2](2+), the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1](2+), the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.
Resumo:
Electron-multiplying charge coupled devices promise to revolutionize ultrasensitive optical imaging. The authors present a simple methodology allowing reliable measurement of camera characteristics and statistics of single-electron events, compare the measurements to a simple theoretical model, and report camera performance in a truly photon-counting regime that eliminates the excess noise related to fluctuations of the multiplication gain.