998 resultados para Phase boundaries
Resumo:
The main objective of the present work was to study the precipitation of the Laves phase in the X1 CrNiMoNb 28 4 2 (Werkstoff-Nr. DIN 1.4575) superferritic stainless steel employing several complementary techniques of microstructural analysis. The phase that precipitated in largest quantity in the DIN 1.4575 steel was the sigma (sigma) phase. However, along grain boundaries, after aging at 850 degrees C, a Laves phase of the MgZn2 type, with a hexagonal C14 crystal structure and chemical composition (Fe,Cr,Ni)(2)(Nb,Mo,Si), was also identified. Growth of the Laves phase is curtailed by exhaustion of niobium of the matrix and by the presence of the sigma phase, which also precipitates in the vicinity of the grain boundaries, however in larger amounts. No chi (chi) or austenite phases were detected in the temperature range studied. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The spectral response and the photocurrent delivered by entirely microcrystalline p-i-n-Si:H detectors an analysed under different applied bias and light illumination conditions. The spectral response and the internal collection depend not only on the energy range but also on the illumination side. Under [p]- and [n]-side irradiation, the internal collection characteristics have an atypical shape. It is high for applied bias and lower than the open circuit voltage, shows a steep decrease near the open circuit voltage (higher under [n]-side illumination) and levels off for higher voltages. Additionally, the numerical modeling of the VIS/NIR detector, based on the band discontinuities near the grain boundaries and interfaces, complements the study and gives insight into the internal physical process.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long-range interactions between dislocations. In light of this result, we revise statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical simulations and experimental data.
Resumo:
We explore the statistical properties of grain boundaries in the vortex polycrystalline phase of type-II superconductors. Treating grain boundaries as arrays of dislocations interacting through linear elasticity, we show that self-interaction of a deformed grain boundary is equivalent to a nonlocal long-range surface tension. This affects the pinning properties of grain boundaries, which are found to be less rough than isolated dislocations. The presence of grain boundaries has an important effect on the transport properties of type-II superconductors as we show by numerical simulations: our results indicate that the critical current is higher for a vortex polycrystal than for a regular vortex lattice. Finally, we discuss the possible role of grain boundaries in vortex lattice melting. Through a phenomenological theory we show that melting can be preceded by an intermediate polycrystalline phase.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
Crystallisation of hydrous mafic magmas at high pressure is a subject of numerous petrologic and experimental studies since the last century and is mainly related to the process of continental crust formation and the possible link between mantle derived melts and low pressure granitoids. Albeit the sequence of crystallization is well constrained by experimental studies, the origin of exposed lower crustal rocks exposed on the earth surface is controversial. Ones line of argument is favouring high pressure crystallization of dry or wet mafic magmas, whereas others invoke partial melting of pre-existing crust. Therefore studies involving field, textural and chemical observations of exposed lower crust such as in Kohistan (Pakistan) or Talkeetna (Alaska) are crucial to understand the continental crust formation processes via arc magmatism. Epidote-bearing gabbros are very sparse and always associated with the deep part of continental crust (>30 km) as in the Kohistan Arc Complex (Pakistan) or in the Chelan Complex (western U.S.). Magmatic epidote is restricted to a small temperature interval above the water-saturated solidus of MORB and represent the last crystallizing liquids in lower crustal regions. However, epidote and melt stability at lower crustal pressures are not clearly established.¦The Chelan complex (western U.S.) at the base of the Cascadian Arc is composed mainly by peraluminous tonalité associated with gabbroic and ultramafic rocks and was traditionally interpreted as a migmatitic terrain. However field, chemical and mineralogical observations rather suggest a magmatic origin and point to a protracted crystallization at intermediate to high pressure ~ 1.0 GPa dominated by amphibole fractionation and followed by isobaric cooling down to 650°C. Crystal fractionation modelling using whole rock composition and field constraints is able to generate peraluminous tonalité. The modelled crystallisation sequence and the volume proportions are in agreement with experimental studies performed at these pressures. The Chelan complex was thus not formed during a partial melting event, but represent the sequence of crystallisation occurring at the base of the crust. Massive fractionation of hornblende is able to generate peraluminous tonalité without significant assimilation of crustal rock.¦Similarly to the Chelan complex, the base of the Kohistan arc is composed of cumulates derived by high pressure crystallization of hydrous magma. In garnet gabbros, epidote occurs as magmatic phase, crystallising from hydrous interstitial melt trapped between grain boundaries at lower crustal pressures (Ρ ~ 1.2 GPa) for temperature of (650-700 °C). Trace and REE signature in epidote indicate that epidote was formed through peritectic reaction involving garnet, clinopyroxene and plagioclase. At the beginning of the crystallisation epidote signature is dominated by REE content in the melt, whereas at the end the signature is dominated by reacting phases. Melt in equilibrium with epidote inferred from the partition coefficients available is similar to intrusive tonalité up the section indicating that hydrous melt was extracted from the garnet gabbros. In some gabbros epidote shows single homogeneous compositions, while in others coexisting epidote have different compositions indicating the presence of solvi along the Al-Fe3+ join. The overgowths are only observed in presence of paragonite in the assemblage, suggesting high water content. At high water content, the hydrous solidus is shift to lower temperature and probably intersects the solvi observed along the Al-Fe3+ join. Therefore, several compositions of epidote is stable at high water content.¦-¦La composition chimique de la croûte continentale est considérée comme similaire à celle du magmatisme calco-alcalin de marge continentale active (enrichissement en éléments mobiles dans les fluides, anomalies négatives en Nb, Ta et éléments à haut potentiel électronique, etc...). Cependant la nature andésitique de la croûte continentale (Si02 > 60 wt%), résultant des nombreuses intrusions de granitoïdes dans la croûte supérieure, est sujette à polémique et le lien entre les magmas dérivés du manteau et les roches évoluées de faible profondeur n'est pas clairement établi (fusion partielle de croûte basaltique, cristallisation fractionnée à haute pression, etc...).¦Les affleurements de croûte profonde sont rares mais précieux, car ils permettent d'observer les phénomènes se passant à grande profondeur. Le complexe de Chelan (Washington Cascades) en est un exemple. Formé à environ 30 km de profondeur, il est composé de roches gabbroïques et ultramafiques, ainsi que de tonalités, qui furent souvent interprétés comme le produit de la fusion partielle de la croûte. Cependant, les relations de terrain, la chimie des éléments majeurs et des éléments traces sont cohérentes avec l'évolution d'un complexe magmatique mafique dans la croûte profonde ou moyenne ( 1.0 GPa), dominée par le fractionnement de l'amphibole. Après son emplacement, le complexe a subi un refroidissement isobare jusqu'à des températures de l'ordre de 650 °C, déduit de la composition chimique des minéraux. Un bilan de masse contraint pax les observations de terrain permet de calculer la séquence et les volumes de fractionnement. Les faciès évolués légèrement hyperalumineux observés sur le terrain peuvent être générés par la cristallisation de 3 % de websterite à olivine, 12 % d'hornblendite à pyroxène 33 % d'hornblendite, 19 % de gabbros, 15 % de diorite et 2 % de tonalité. Nous montrons ainsi qu'une série de fractionnement contrôlée par l'amphibole permet de générer des tonalités sans assimilation de matériel crustal et l'exemple de Chelan illustre la viabilité de ce processus dans la formation de croûte continentale.¦Les réactions proches du solidus saturé en H20 dans les systèmes basaltiques à des pressions élevées restent énigmatiques. Diverses expériences tendent à montrer que l'épidote est stable dans ces conditions, mais rarement observée (décrite ?) comme phase primaire dans les systèmes naturels. Les épidotes trouvées dans les gabbros de Jijal (nord-Pakistan) montrent des textures de type .magmatique telles qu'observées dans les roches évoluées. Le contenu en terres rares de ces épidotes est très variable allant de signatures enrichies en terres rares légères impliquant la présence de liquide interstitiel à des signatures complètement déprimées en ces mêmes éléments, évoquant une cristallisation en coexistence avec du grenat. Ces diverses signatures reflètent un chemin de cristallisation en présence de liquide interstitiel et enregistrent des réactions péritectiques impliquant grenat, clinopyroxene et plagioclase à des pressions de ~ 1.2 GPa pour des températures de 650-700 °C. Cependant dans quelques échantillons deux ou trois compositions d'épidotes coexistent démontrant la présence de lacunes d'immiscibilité le long de la solution solide épidote-clinozoïsite. La forte teneur en H20 du liquide magmatique est certainement à l'origine de la coexistence de deux compositions distinctes.
Resumo:
We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long-range interactions between dislocations. In light of this result, we revise statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical simulations and experimental data.
Resumo:
We explore the statistical properties of grain boundaries in the vortex polycrystalline phase of type-II superconductors. Treating grain boundaries as arrays of dislocations interacting through linear elasticity, we show that self-interaction of a deformed grain boundary is equivalent to a nonlocal long-range surface tension. This affects the pinning properties of grain boundaries, which are found to be less rough than isolated dislocations. The presence of grain boundaries has an important effect on the transport properties of type-II superconductors as we show by numerical simulations: our results indicate that the critical current is higher for a vortex polycrystal than for a regular vortex lattice. Finally, we discuss the possible role of grain boundaries in vortex lattice melting. Through a phenomenological theory we show that melting can be preceded by an intermediate polycrystalline phase.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
Low-energy and photoemission electron microscopy enables the determination of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub-m scale. Using these techniques the early oxidation stages of nickel were studied. After exposing the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all facets. After oxygen exposure at 473–673 K, small NiO crystallites are formed on all facets but not in the vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without significant oxygen coverage.
Resumo:
We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.
Resumo:
By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The anelastic spectrum (dynamic Young's modulus and elastic energy absorption) of La2CuO4+δ has been measured between 1 and 700 K with 0<δ<0.02. The spectrum of stoichiometric La2CuO4 in the low-temperature orthorhombic (LTO) phase is dominated by two intense relaxation processes which cause softenings of 16% around 150 K and 9% below 30 K at f∼1 kHz. The relaxation at 150 K is attributed to the presence of a fraction of the CuO6 octahedra which are able to change their tilted configuration by thermal activation between orientations which are nearly energetically equivalent, possibly within the twin boundaries. The relaxation below 30 K is governed by tunneling, and involves a considerable fraction of the lattice atoms. It is proposed that the double-well potentials for the low-temperature relaxation are created by the tendency of the LTO phase to form low-temperature tetragonal (LTT) domains, which however are not stabilized like when La is partially substituted with Ba. On doping with excess O, the relaxation rates of these processes are initially enhanced by hole doping, while their intensities are depressed by lattice disorder; an explanation of this behavior is provided. Excess O also causes two additional relaxation processes. The one appearing at lower values of δ is attributed to the hopping of single interstitial O2- ions, with a hopping rate equal to τ-1=2×10-14exp(-5600/T) s. The second process is slower and can be due to O pairs or other complexes containing excess O.