82 resultados para Phascolarctos-cinereus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. METHODS: In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). RESULTS: We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and those without infection using qPCR. This analysis revealed that one of these four, CLEC4E, may be upregulated in response to chlamydia infection. CONCLUSION: We have characterised genes of the NKC and LRC in koalas and have discovered evidence that one of these genes may be upregulated in koalas with chlamydia, suggesting that these receptors may play a role in the immune response of koalas to chlamydia infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zoonotic infections are a growing threat to global health. Chlamydia pneumoniae is a major human pathogen that is widespread in human populations, causing acute respiratory disease, and has been associated with chronic disease. C. pneumoniae was first identified solely in human populations; however, its host range now includes other mammals, marsupials, amphibians, and reptiles. Australian koalas (Phascolarctos cinereus) are widely infected with two species of Chlamydia, C. pecorum and C. pneumoniae. Transmission of C. pneumoniae between animals and humans has not been reported; however, two other chlamydial species, C. psittaci and C. abortus, are known zoonotic pathogens. We have sequenced the 1,241,024-bp chromosome and a 7.5-kb cryptic chlamydial plasmid of the koala strain of C. pneumoniae (LPCoLN) using the whole-genome shotgun method. Comparative genomic analysis, including pseudogene and single-nucleotide polymorphism (SNP) distribution, and phylogenetic analysis of conserved genes and SNPs against the human isolates of C. pneumoniae show that the LPCoLN isolate is basal to human isolates. Thus, we propose based on compelling genomic and phylogenetic evidence that humans were originally infected zoonotically by an animal isolate(s) of C. pneumoniae which adapted to humans primarily through the processes of gene decay and plasmid loss, to the point where the animal reservoir is no longer required for transmission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of cameras to monitor wildlife is commonplace; however, little is known of the effectiveness of different camera technologies for the detection of mammals. We compared the detection success of three different camera systems, a passive infrared (IR) system, an active IR and a constant video camera, alongside a trapping grid of Elliott and cage traps to determine their effectiveness at detecting mammals at multiple locations in the Otways National Park, Victoria, Australia (n = 160 events; 40 ± 23 [SD] events per night). Species detected and detection rates differed between methods (χ2 = 57.95, df = 2, p < 0.0001). Only house mice (Mus musculus) were detected by camera and traditional trapping techniques. Camera systems alone detected foxes (Vulpes vulpes) and a koala (Phascolarctos cinereus), while traditional traps captured bush rats (Rattus fuscipes), agile antechinus (Antechinus agilis) and a brush-tailed possum (Trichosurus vulpecula) which were not detected by the camera systems. Assuming that the video camera detected all mammals at the camera trap, the passive IR system detected almost all mammals detected by the video and it detected significantly more species than the active IR system. The choice of method will ultimately depend on the species of interest, logistics and the study site, and may substantially influence the results of a study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Linear strips of vegetation set within a less-hospitable matrix are common features of landscapes throughout the world. Depending on location, form and function, these linear landscape elements include hedgerows, fencerows, shelterbelts, roadside or streamside strips and wildlife corridors. In many anthropogenically-modified landscapes, linear strips are important components for conservation because they provide a large proportion of the remaining wooded or shrubby habitat for fauna. They may also function to provide connectivity across the landscape. In some districts, the linear strips form an interconnected network of habitat. The spatial configuration of remnant habitat (size, shape and arrangement) may influence habitat suitability, and hence survival, of many species of plant and animal in modified landscapes. Near Euroa in south-eastern Australia, the clearing and fragmentation of temperate woodlands for agriculture has been extensive and, at present, less than 5% tree cover remains, most of which (83%) occurs as linear strips along roads and streams. The remainder of the woodland occurs as relatively small patches and single isolated trees scattered across the landscape. As an assemblage, arboreal marsupials are woodland dependent and vary in their sensitivity to habitat loss and fragmentation. This thesis focusses on determining the conservation status of arboreal marsupials in the linear network and understanding how they utilise the landscape mosaic. Specifically, the topics examined in this thesis are: (1) the composition of the arboreal marsupial assemblage in linear and non-linear woodland remnants; (2) the status and habitat preferences of species of arboreal marsupial within linear remnants; and (3) the ecology of a population of the Squirrel Glider Petaurus norfolcensis in the linear network, focusing on population dynamics, spatial organisation, and use of den trees. The arboreal marsupial fauna in the linear network was diverse, and comprised seven out of eight species known to occur in the district. The species detected within the strips were P. norfolcensis, the Sugar Glider Petaurus breviceps, Common Brushtail Possum Trichosums vulpecula, Common Ringtail Possum Pseudocheirus peregrinus, Brush-tailed Phascogale Phascogale tapoatafa, Koala Phascolarctos cinereus and Yellow-footed Antechinus Antechinus flavipes. The species not detected was the Feathertail Glider Acrabates pygmaeus. Survey sites in linear remnants (strips of woodland along roads and streams) supported a similar richness and density of arboreal mammals to sites in non-linear remnants (large patches or continuous tracts of woodland nearby). Furthermore, the combined abundance of all species of arboreal marsupials was significantly greater in sites in the linear remnants than in the non-linear remnants. This initial phase of the study provided no evidence that linear woodland remnants support a degraded or impoverished arboreal marsupial fauna in comparison with the nonlinear remnants surveyed. Intensive trapping of arboreal marsupials within a 15 km linear network between February 1997 and June 1998 showed that all species of arboreal marsupial (except A. pygmaeus) were present within the linear strips. Further analyses related trap-based abundance estimates to measures of habitat quality and landscape structure. Width of the linear habitat was significantly positively correlated with the combined abundance of all arboreal marsupials, as well as with the abundance of P. norfolcensis and T. vulpecula. The abundance of T. vulpecula was also significantly positively correlated with variation in overstorey species composition, Acacia density and the number of hollow-bearing trees. The abundance of P. norfolcensis was positively correlated with Acacia density and canopy width, and negatively correlated with distance to the nearest intersection with another linear remnant. No significant variables were identified to explain the abundance of P. tapoatafa, and there were insufficient captures of the remaining species to investigate habitat preferences. Petaurus norfolcensis were resident within the linear network and their density (0.95 -1.54 ha-1) was equal to the maximum densities recorded for this species in continuous forest elsewhere in south-eastern Australia. Rates of reproduction were also similar to those in continuous forest, with births occurring between May and December, a mean natality rate of 1.9, and a mean litter size of 1.7. Sex ratios never differed significantly from parity. Overall, the population dynamics of P. norfolcensis were comparable with published results for the species in contiguous forest, clearly suggesting that the linear remnants currently support a self-sustaining, viable population. Fifty-one P. norfolcensis were fitted with radio transmitters and tracked intermittently between December 1997 and November 1998. Home ranges were small (1.3 - 2.8 ha), narrow (20 - 40 m) and elongated (322 - 839 m). Home ranges were mostly confined to the linear remnants, although 80% of gliders also utilised small clumps of adjacent woodland within farm paddocks for foraging or denning. Home range size was significantly larger at intersections between two or more linear remnants than within straight sections of linear remnants. Intersections appeared to be important sites for social interaction because the overlap of home ranges of members of adjacent social groups was significantly greater at intersections than straight sections. Intersections provided the only opportunity for members of three or more social groups to interact, while still maintaining their territories. The 51 gliders were radiotracked to 143 different hollow-bearing trees on 2081 occasions. On average, gliders used 5.3 den trees during the study (range 1-15), and changed den trees every 4.9 days. The number of den trees used by each glider is likely to be conservative because the cumulative number of den trees continued to increase over the full duration of the study. When gliders shifted between den trees, the mean distance between consecutive den sites was 247 m. Den trees were located throughout a glider's home range, thereby reducing the need to return to a central den site and potentially minimising energy expenditure. Dens were usually located in large trees (mean diameter 88.5 cm) and were selected significantly more often than expected based on their occurrence within the landscape. The overall conclusion of this thesis is that the linear network I studied provides high quality habitat for resident populations of arboreal marsupials. Important factors influencing the suitability of the linear remnants appear to be the high level of network connectivity, the location on soils of high nutrient status, the high density of large trees and an acacia understorey. In highly fragmented landscapes, linear habitats as part of the remaining woodland mosaic have the potential to be an integral component in the conservation of woodland-dependent fauna. The habitat value of linear strips of vegetation should not be underestimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reproductive characteristics of a wildlife population are typically sensitive to changes in environmental conditions and intrinsic factors. Knowledge of these relationships is critical for understanding population dynamics and effective long-term management of a population. We examined temporal variation in reproductive parameters of an abundant, genetically compromised, and high-density population of koalas (Phascolarctos cinereus) on Kangaroo Island, South Australia, over 3 breeding seasons spanning 9 years: November–May of 1997–1998, 2005–2006, and 2006–2007. Timing of the breeding season was consistent between years, but fecundity, sex ratio of young, and the percentage of independent females (those not accompanying a lactating female) , 6 kg varied. Fecundity was lower than in other island populations, suggesting that the quality and distribution of food resources or inbreeding may be impacting the Kangaroo Island population. We did not test for Chlamydophila (synonym =Chlamydia), and clinical signs of this disease were not reported for any of the koalas in this study. However, historical evidence of Chlamydophila-infected koalas on Kangaroo Island exists, and the potential impact of this disease on fecundity warrants further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The koala (Phascolarctos cinereus), one of the world's most iconic faunal species, was recently listed under Australian government legislation as vulnerable in the northern states of Queensland and New South Wales and in the Australian Capital Territory, but not in the southern states of Victoria and South Australia. This review synthesises empirical evidence of regional koala population trends, their conservation outlook, and associated policy challenges. Population declines are common in the northern half of the koala's range, where habitat loss, hotter droughts, disease, dog attacks and vehicle collisions are the major threats. In contrast, some southern populations are locally overabundant and are now subject to managed declines. The koala presents the problem of managing a wide-ranging species that now primarily occurs in human-modified landscapes, some of which are rapidly urbanising or subject to large-scale agricultural and mining developments. Climate change is a major threat to both northern and southern populations. The implementation of policy to conserve remaining koala habitat and restore degraded habitat is critical to the success of koala conservation strategies, but habitat conservation alone will not resolve the issues of koala conservation. There needs to be concerted effort to reduce the incidence of dog attack and road-related mortality, disease prevalence and severity, and take into account new threats of climate change and mining. Many of the complex conservation and policy challenges identified here have broader significance for other species whose population trends, and the nature of the threatening processes, vary from region to region, and through time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Koala retrovirus (KoRV) is a newly described endogenous retrovirus and is unusual in that inserts comprise a full-length replication competent genome. As koalas are known to suffer from an extremely high incidence of leukaemia/lymphoma, the association between this retrovirus and disease in koalas was examined. Using quantitative real-time reverse transcriptase PCR it was demonstrated that KoRV RNA levels in plasma are significantly increased in animals suffering from leukaemia or lymphoma when compared with healthy animals. Increased levels of KoRV were also seen for animals with clinical chlamydiosis. A significant positive association between viral RNA levels and age was also demonstrated. Real-time PCR demonstrated as much as 5 log variation in KoRV proviral DNA levels in genomic DNA extracted from whole blood from different animals. Taken together these data indicate that KoRV is an active endogenous retrovirus and suggests that it may be causally linked to neoplastic disease in koalas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to compare cryopreservation, osmotic tolerance and glycerol toxicity between mature and immature epididymal kangaroo spermatozoa to investigate whether the lack of cryopreservation success of cauda epididymidal spermatozoa may be related to the increased complexity of the sperm ultrastructure acquired during epididymal transit. Caput and cauda epididymidal spermatozoa were recovered from red-necked wallabies (RNW; Macropus rufogriseus) and eastern grey kangaroos (EGK; M. giganteus). In Experiment 1, caput and cauda epididymidal spermatozoa were frozen and thawed using a standard cryopreservation procedure in Triscitrate buffer with or without 20% glycerol. Although cryopreservation of caput epididymidal spermatozoa resulted in a significant increase in sperm plasma membrane damage, they were more tolerant of the procedure than spermatozoa recovered from the cauda epididymidis (P< 0.05). In Experiment 2, caput and cauda epididymidal EGK spermatozoa were diluted into phosphate-buffered saline media of varying osmolarity and their osmotic tolerance determined. Plasma membranes of caput epididymidal spermatozoa were more tolerant of hypo-osmotic media than were cauda epididymidal spermatozoa ( P< 0.05). In Experiment 3, caput and cauda epididymidal RNW spermatozoa were incubated in Tris-citrate buffer with and without 20% glycerol at 35 and 4 degrees C to examine the cytotoxic effects of glycerol. At both temperatures, caput epididymidal spermatozoa showed less plasma membrane damage compared with cauda epididymidal spermatozoa when exposed to 20% glycerol ( P< 0.05). These experiments clearly indicate that epididymal maturation of kangaroo spermatozoa results in a decreased ability to withstand the physiological stresses associated with cryopreservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional sensitivity and elasticity analyses of matrix population models have been used to p inform management decisions, but they ignore the economic costs of manipulating vital rates. For exam le, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously, These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presence-absence surveys are a commonly used method for monitoring broad-scale changes in wildlife distributions. However, the lack of power of these surveys for detecting population trends is problematic for their application in wildlife management. Options for improving power include increasing the sampling effort or arbitrarily relaxing the type I error rate. We present an alternative, whereby targeted sampling of particular habitats in the landscape using information from a habitat model increases power. The advantage of this approach is that it does not require a trade-off with either cost or the Pr(type I error) to achieve greater power. We use a demographic model of koala (Phascolarctos cinereus) population dynamics and simulations of the monitoring process to estimate the power to detect a trend in occupancy for a range of strategies, thereby demonstrating that targeting particular habitat qualities can improve power substantially. If the objective is to detect a decline in occupancy, the optimal strategy is to sample high-quality habitats. Alternatively, if the objective is to detect an increase in occupancy, the optimal strategy is to sample intermediate-quality habitats. The strategies with the highest power remained the same under a range of parameter assumptions, although observation error had a strong influence on the optimal strategy. Our approach specifically applies to monitoring for detecting long-term trends in occupancy or abundance. This is a common and important monitoring objective for wildlife managers, and we provide guidelines for more effectively achieving it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (< 1 ha), patch level (100 ha) and landscape level (100-1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss and fragmentation of forest habitats by human land use are recognised as important factors influencing the decline of forest-dependent fauna. Mammal species that are dependent upon forest habitats are particularly sensitive to habitat loss and fragmentation because they have highly specific habitat requirements, and in many cases have limited ability to move through and utilise the land use matrix. We addressed this problem using a case study of the koala (Phascolarctos cinereus) surveyed in a fragmented rural-urban landscape in southeast Queensland, Australia. We applied a logistic modelling and hierarchical partitioning analysis to determine the importance of forest area and its configuration relative to site (local) and patch-level habitat variables. After taking into account spatial auto-correlation and the year of survey, we found koala occurrence increased with the area of all forest habitats, habitat patch size and the proportion of primary Eucalyptus tree species; and decreased with mean nearest neighbour distance between forest patches, the density of forest patches, and the density of sealed roads. The difference between the effect of habitat area and configuration was not as strong as theory predicts, with the configuration of remnant forest becoming increasingly important as the area of forest habitat declines. We conclude that the area of forest, its configuration across the landscape, as well as the land use matrix, are important determinants of koala occurrence, and that habitat configuration should not be overlooked in the conservation of forest-dependent mammals, such as the koala. We highlight the implications of these findings for koala conservation. (c) 2006 Elsevier Ltd. All rights reserved.