890 resultados para Persistent robot navigation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

首先给出了一种通过融合多个超声波传感器和一台激光全局定位系统的数据建立机器人环境地图的方法 ,并在此基础上 ,首次提出了机器人在非结构环境下识别障碍物的一种新方法 ,即基于障碍物群的方法 .该方法的最大特点在于它可以更加简洁、有效地提取和描述机器人的环境特征 ,这对于较好地实现机器人的导航、避障 ,提高系统的自主性和实时性是至关重要的 .大量的实验结果表明了该方法的有效性 .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room it is inspecting, such as moving objects. Forward and rotational motion vision are used to find doors and rooms, and these can be used to build topological maps. The map is built without the use of odometry or trajectory integration. The long term goal of the project described here is for the robot to build simple maps of its environment and to localize itself within this framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot. The result is an instance of the model grammar that implements the robotic system and is independent of the sensing devices used for perception and interaction. As a conclusion the Virtual Worlds Generator adds value in the simulation of virtual worlds since the definition can be done formally and independently of the peculiarities of the supporting devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous work has shown that robot navigation systems that employ an architecture based upon the idiotypic network theory of the immune system have an advantage over control techniques that rely on reinforcement learning only. This is thought to be a result of intelligent behaviour selection on the part of the idiotypic robot. In this paper an attempt is made to imitate idiotypic dynamics by creating controllers that use reinforcement with a number of different probabilistic schemes to select robot behaviour. The aims are to show that the idiotypic system is not merely performing some kind of periodic random behaviour selection, and to try to gain further insight into the processes that govern the idiotypic mechanism. Trials are carried out using simulated Pioneer robots that undertake navigation exercises. Results show that a scheme that boosts the probability of selecting highly-ranked alternative behaviours to 50% during stall conditions comes closest to achieving the properties of the idiotypic system, but remains unable to match it in terms of all round performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Telepresence robots have emerged as a new means of interaction in remote environments. However, the use of such robots is still limited due to safety and usability issues when operating in human-like environments. This work addresses these issues by enhancing the robot navigation through a collaborative control method that assists the user to negotiate obstacles. The method has been implemented in a commercial telepresence robot and a user study has been conducted in order to test the suitability of our approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a method for vision only topological simultaneous localisation and mapping (SLAM). Our approach does not use motion or odometric information but a sequence of colour histograms from visited places. In particular, we address the perceptual aliasing problem which occurs using external observations only in topological navigation. We propose a Bayesian inference method to incrementally build a topological map by inferring spatial relations from the sequence of observations while simultaneously estimating the robot's location. The algorithm aims to build a small map which is consistent with local adjacency information extracted from the sequence measurements. Local adjacency information is incorporated to disambiguate places which otherwise would appear to be the same. Experiments in an indoor environment show that the proposed technique is capable of dealing with perceptual aliasing using visual observations only and successfully performs topological SLAM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Competent navigation in an environment is a major requirement for an autonomous mobile robot to accomplish its mission. Nowadays, many successful systems for navigating a mobile robot use an internal map which represents the environment in a detailed geometric manner. However, building, maintaining and using such environment maps for navigation is difficult because of perceptual aliasing and measurement noise. Moreover, geometric maps require the processing of huge amounts of data which is computationally expensive. This thesis addresses the problem of vision-based topological mapping and localisation for mobile robot navigation. Topological maps are concise and graphical representations of environments that are scalable and amenable to symbolic manipulation. Thus, they are well-suited for basic robot navigation applications, and also provide a representational basis for the procedural and semantic information needed for higher-level robotic tasks. In order to make vision-based topological navigation suitable for inexpensive mobile robots for the mass market we propose to characterise key places of the environment based on their visual appearance through colour histograms. The approach for representing places using visual appearance is based on the fact that colour histograms change slowly as the field of vision sweeps the scene when a robot moves through an environment. Hence, a place represents a region of the environment rather than a single position. We demonstrate in experiments using an indoor data set, that a topological map in which places are characterised using visual appearance augmented with metric clues provides sufficient information to perform continuous metric localisation which is robust to the kidnapped robot problem. Many topological mapping methods build a topological map by clustering visual observations to places. However, due to perceptual aliasing observations from different places may be mapped to the same place representative in the topological map. A main contribution of this thesis is a novel approach for dealing with the perceptual aliasing problem in topological mapping. We propose to incorporate neighbourhood relations for disambiguating places which otherwise are indistinguishable. We present a constraint based stochastic local search method which integrates the approach for place disambiguation in order to induce a topological map. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that a small map is found quickly. Moreover, the method of using neighbourhood information for place disambiguation is integrated into a framework for topological off-line simultaneous localisation and mapping which does not require an initial categorisation of visual observations. Experiments on an indoor data set demonstrate the suitability of our method to reliably localise the robot while building a topological map.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wall and terrain following is a challenging problem for small, fast, and fragile robot vehicles. This paper presents a robust algorithm based on wide field integration of optic flow. Solutions for two dimensional and three dimensional wall following is provided for vehicles with non-holonomic velocity constraints that ensure that the focus of expansion of the flow field is known. The potential of the proposed algorithm is demonstrated in a simulation environment.