931 resultados para Perceptual image quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate whether an adaptive statistical iterative reconstruction (ASIR) algorithm improves the image quality at low-tube-voltage (80-kVp), high-tube-current (675-mA) multidetector abdominal computed tomography (CT) during the late hepatic arterial phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temporal bone is ideal for low-dose CT because of its intrinsic high contrast. The aim of this study was to retrospectively evaluate image quality and radiation doses of a new low-dose versus a standard high-dose pediatric temporal bone CT protocol and to review dosimetric data from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundDespite the increasingly higher spatial and contrast resolution of CT, nodular lesions are prone to be missed on chest CT. Tinted lenses increase visual acuity and contrast sensitivity by filtering short wavelength light of solar and artificial origin.PurposeTo test the impact of Gunnar eyewear, image quality (standard versus low dose CT) and nodule location on detectability of lung nodules in CT and to compare their individual influence.Material and MethodsA pre-existing database of CT images of patients with lung nodules >5 mm, scanned with standard does image quality (150 ref mAs/120 kVp) and lower dose/quality (40 ref mAs/120 kVp), was used. Five radiologists read 60 chest CTs twice: once with Gunnar glasses and once without glasses with a 1 month break between. At both read-outs the cases were shown at lower dose or standard dose level to quantify the influence of both variables (eyewear vs. image quality) on nodule sensitivity.ResultsThe sensitivity of CT for lung nodules increased significantly using Gunnar eyewear for two readers and insignificantly for two other readers. Over all, the mean sensitivity of all radiologist raised significantly from 50% to 53%, using the glasses (P value = 0.034). In contrast, sensitivity for lung nodules was not significantly affected by lowering the image quality from 150 to 40 ref mAs. The average sensitivity was 52% at low dose level, that was even 0.7% higher than at standard dose level (P value = 0.40). The strongest impact on sensitivity had the factors readers and nodule location (lung segments).ConclusionSensitivity for lung nodules was significantly enhanced by Gunnar eyewear (+3%), while lower image quality (40 ref mAs) had no impact on nodule sensitivity. Not using the glasses had a bigger impact on sensitivity than lowering the image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: To evaluate the effect of a modified abdominal multislice computed tomography (CT) protocol for obese patients on image quality and radiation dose. MATERIALS AND METHODS: An adult female anthropomorphic phantom was used to simulate obese patients by adding one or two 4-cm circumferential layers of fat-equivalent material to the abdominal portion. The phantom was scanned with a subcutaneous fat thickness of 0, 4, and 8 cm using the following parameters (detector configuration/beam pitch/table feed per rotation/gantry rotation time/kV/mA): standard protocol A: 16 x 0.625 mm/1.75/17.5 mm/0.5 seconds/140/380, and modified protocol B: 16 x 1.25 mm/1.375/27.5 mm/1.0 seconds/140/380. Radiation doses to six abdominal organs and the skin, image noise values, and contrast-to-noise ratios (CNRs) were analyzed. Statistical analysis included analysis of variance, Wilcoxon rank sum, and Student's t-test (P < .05). RESULTS: Applying the modified protocol B with one or two fat rings, the image noise decreased significantly (P < .05), and simultaneously, the CNR increased significantly compared with protocol A (P < .05). Organ doses significantly increased, up to 54.7%, comparing modified protocol B with one fat ring to the routine protocol A with no fat rings (P < .05). However, no significant change in organ dose was seen for protocol B with two fat rings compared with protocol A without fat rings (range -2.1% to 8.1%) (P > .05). CONCLUSIONS: Using a modified abdominal multislice CT protocol for obese patients with 8 cm or more of subcutaneous fat, image quality can be substantially improved without a significant increase in radiation dose to the abdominal organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess magnetic resonance (MR)-colonography (MRC) for detection of colorectal lesions using two different T1w three-dimensional (3D)-gradient-recalled echo (GRE)-sequences and integrated parallel data acquisition (iPAT) at a 3.0 Tesla MR-unit. MATERIALS AND METHODS: In this prospective study, 34 symptomatic patients underwent dark lumen MRC at a 3.0 Tesla unit before conventional colonoscopy (CC). After colon distension with tap water, 2 high-resolution T1w 3D-GRE [3-dimensional fast low angle shot (3D-FLASH), iPAT factor 2 and 3D-volumetric interpolated breathhold examination (VIBE), iPAT 3] sequences were acquired without and after bolus injection of gadolinium. Prospective evaluation of MRC was performed. Image quality of the different sequences was assessed qualitatively and quantitatively. The findings of the same day CC served as standard of reference. RESULTS: MRC identified all polyps >5 mm (16 of 16) in size and all carcinomas (4 of 4) correctly. Fifty percent of the small polyps quality was excellent in 94% (384 of 408 colonic segments) using the 3D-FLASH and in 92% (376 of 408) for the VIBE. The 3D-FLASH sequence showed a 3-fold increase in signal-to-noise ratio (8 +/- 3.3 standard deviation (SD) in lesions without contrast enhancement (CE); 24.3 +/- 7.8 SD after CE). For the 3D-VIBE sequence, signal-to-noise ratio doubled in the detected lesions (147 +/- 54 SD without and 292 +/- 168 SD after CE). Although image quality was ranked lower in the VIBE, the image quality score of both sequences showed no statistical significant difference (chi > 0.6). CONCLUSIONS: MRC using 3D-GRE-sequences and iPAT is feasible at 3.0 T-systems. The high-resolution 3D-FLASH was slightly preferred over the 3D-VIBE because of better image quality, although both used sequences showed no statistical significant difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare image quality and radiation dose of thoracoabdominal computed tomography (CT) angiography at 80 and 100 kVp and to assess the feasibility of reducing contrast medium volume from 60 to 45 mL at 80 kVp. MATERIALS AND METHODS: This retrospective study had institutional review board approval; informed consent was waived. Seventy-five patients who had undergone thoracoabdominal 64-section multidetector-row CT angiography were divided into 3 groups of 25 patients each. Patients of groups A (tube voltage, 100 kVp) and B (tube voltage, 80 kVp) received 60 mL of contrast medium at 4 mL/s. Patients of group C (tube voltage, 80 kVp) received 45 mL of contrast medium at 3 mL/s. Mean aortoiliac attenuation, image noise, and contrast-to-noise ratio were assessed. The measurement of radiation dose was based on the volume CT dose index. Three independent readers assessed the diagnostic image quality. RESULTS: Mean aortoiliac attenuation for group B (621.1 +/- 90.5 HU) was significantly greater than for groups A and C (485.2 +/- 110.5 HU and 483.1 +/- 119.8 HU; respectively) (P < 0.001). Mean image noise was significantly higher for groups B and C than for group A (P < 0.05). The contrast-to-noise ratio did not significantly differ between the groups (group A, 35.0 +/- 13.8; group B, 31.7 +/- 10.1; group C, 27.3 +/- 11.5; P = 0.08). Mean volume CT dose index in groups B and C (5.2 +/- 0.4 mGy and 4.9 +/- 0.3 mGy, respectively) were reduced by 23.5% and 27.9%, respectively, compared with group A (6.8 +/- 0.8 mGy) (P < 0.001). The average overall diagnostic image quality for the 3 groups was graded as good or better. The score for group A was significantly higher than that for group C (P < 0.01), no difference was seen between group A and B (P = 0.92). CONCLUSIONS: Reduction of tube voltage from 100 to 80 kVp for thoracoabdominal CT angiography significantly reduces radiation dose without compromising image quality. Reduction of contrast medium volume to 45 mL at 80 kVp resulted in lower but still diagnostically acceptable image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this retrospective study was to assess image quality with pulmonary CT angiography (CTA) using 80 kVp and to find anthropomorphic parameters other than body weight (BW) to serve as selection criteria for low-dose CTA. Attenuation in the pulmonary arteries, anteroposterior and lateral diameters, cross-sectional area and soft-tissue thickness of the chest were measured in 100 consecutive patients weighing less than 100 kg with 80 kVp pulmonary CTA. Body surface area (BSA) and contrast-to-noise ratios (CNR) were calculated. Three radiologists analyzed arterial enhancement, noise, and image quality. Image parameters between patients grouped by BW (group 1: 0-50 kg; groups 2-6: 51-100 kg, decadally increasing) were compared. CNR was higher in patients weighing less than 60 kg than in the BW groups 71-99 kg (P between 0.025 and <0.001). Subjective ranking of enhancement (P = 0.165-0.605), noise (P = 0.063), and image quality (P = 0.079) did not differ significantly across all patient groups. CNR correlated moderately strongly with weight (R = -0.585), BSA (R = -0.582), cross-sectional area (R = -0.544), and anteroposterior diameter of the chest (R = -0.457; P < 0.001 all parameters). We conclude that 80 kVp pulmonary CTA permits diagnostic image quality in patients weighing up to 100 kg. Body weight is a suitable criterion to select patients for low-dose pulmonary CTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: To evaluate the effect of automatic tube current modulation on radiation dose and image quality for low tube voltage computed tomography (CT) angiography. MATERIALS AND METHODS: An anthropomorphic phantom was scanned with a 64-section CT scanner using following tube voltages: 140 kVp (Protocol A), 120 kVp (Protocol B), 100 kVp (Protocol C), and 80 kVp (Protocol D). To achieve similar noise, combined z-axis and xy-axes automatic tube current modulation was applied. Effective dose (ED) for the four tube voltages was assessed. Three plastic vials filled with different concentrations of iodinated solution were placed on the phantom's abdomen to obtain attenuation measurements. The signal-to-noise ratio (SNR) was calculated and a figure of merit (FOM) for each iodinated solution was computed as SNR(2)/ED. RESULTS: The ED was kept similar for the four different tube voltages: (A) 5.4 mSv +/- 0.3, (B) 4.1 mSv +/- 0.6, (C) 3.9 mSv +/- 0.5, and (D) 4.2 mSv +/- 0.3 (P > .05). As the tube voltage decreased from 140 to 80 kVp, image noise was maintained (range, 13.8-14.9 HU) (P > .05). SNR increased as the tube voltage decreased, with an overall gain of 119% for the 80-kVp compared to the 140-kVp protocol (P < .05). The FOM results indicated that with a reduction of the tube voltage from 140 to 120, 100, and 80 kVp, at constant SNR, ED was reduced by a factor of 2.1, 3.3, and 5.1, respectively, (P < .001). CONCLUSIONS: As tube voltage decreases, automatic tube current modulation for CT angiography yields either a significant increase in image quality at constant radiation dose or a significant decrease in radiation dose at a constant image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this retrospective study was to intra-individually compare the image quality of computed radiography (CR) and low-dose linear-slit digital radiography (LSDR) for supine chest radiographs. A total of 90 patients (28 female, 62 male; mean age, 55.1 years) imaged with CR and LSDR within a mean time interval of 2.8 days +/- 3.0 were included in this study. Two independent readers evaluated the image quality of CR and LSDR based on modified European Guidelines for Quality Criteria for chest X-ray. The Wilcoxon test was used to analyse differences between the techniques. The overall image quality of LSDR was significantly better than the quality of CR (9.75 vs 8.16 of a maximum score of 10; p < 0.001). LSDR performed significantly better than CR for delineation of anatomical structures in the mediastinum and the retrocardiac lung (p < 0.001). CR was superior to LSDR for visually sharp delineation of the lung vessels and the thin linear structures in the lungs. We conclude that LSDR yields better image quality and may be more suitable for excluding significant pathological features of the chest in areas with high attenuation compared with CR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM To compare the computed tomography (CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS A lung phantom (Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge (all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE (scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined (reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction (SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products (DLPs) (mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS When using iterative reconstruction (IR) instead of filtered back projection (FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality (P < 0.0001). The recently introduced Stellar detector (Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively (P < 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34% (22%-37%) and 25% (13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59% (46%-71%) and 51% (38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25% (2%-42%) and 44% (33%-54%) using IR and Sd, respectively. CONCLUSION This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.