992 resultados para Pb1-x Ca x TiO3
Resumo:
The performance of La(2-x)M(x)CuO(4) perovskites (where M = Ce, Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290 degrees C and 360 degrees C. The catalysts were characterized by EDS, XRD, N(2) adsorption-desorption, XPS and XANES. The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure), suggesting the incorporation of metals in the perovskite structure. The XPS and XANES results showed the presence of Cu(2+) on the surface. The perovskites that exhibited the best catalytic performance were La(2-x)Ce(x)CuO(4) perovslcites, with CO conversions of 85%-90%. Moreover, these perovskites have higher surface areas and larger amounts of Cu on the surface. And Ce has a higher filled energy level than the other metals, increasing the energy of the valence band of Ce and providing more electrons for the reaction. Besides, the La(1.80)Ca(0.20)CuO(4) perovskite showed a good catalytic performance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we report an experimental and theoretical study based on a periodic density functional investigation into selected compositions of Pb1-xCaxTiO3 (x=0.0, 0.25, 0.50, and 0.75). Based on our findings, we propose that the pseudocubic structure of these perovskites presents a long-range tendency for cubic symmetry, while the short-range displacements bring the solid solution to a tetragonal symmetry. The results are discussed in terms of x-ray diffraction, structural optimized parameters, Raman spectroscopy, band structure, density of states, Mulliken charge, and overlap population.
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. on the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE-PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films.
Resumo:
The electronic structure of Pb1-xLaxTiO3 (PLT) compounds for x ranging from 0 to 30 at. % of La is investigated by means of soft x-ray absorption near edge structure (XANES) at the Ti L-3,L-2 and O K edges. The greatest modification in the structure of the Ti 2p XANES spectra of the PLT compounds is observed in the region of the high energy peak of the L-3 edge (e(g) states), which exhibits a splitting in the undoped sample. As the amount of lanthanum increases, this splitting becomes less pronounced. This modification is interpreted as a decrease in the degree of disorder of titanium atoms, which is correlated to the substitution of Pb by La atoms. The structural changes observed at the low energy peaks of the O K-edge XANES spectra of the PLT compounds may be interpreted in terms of hybridization between O 2p, Ti 3d, and Pb 6p orbitals. A decrease in the degree of hybridization observed as Pb atoms are replaced by La atoms may be related to the differences in the ferroelectric properties observed between x=0.0 and x=0.30 compounds. (c) 2006 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PLT (Pb1-xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 degrees C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (D-BET) with the values of the average crystallite sizes obtained by XRD (D-XRD). (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.
Resumo:
Ca1+xCu3-xTi4O12 powders were synthesized by a conventional solid-state reaction. X-ray diffraction (XRD) was performed to verify the formation of cubic CaCu3Ti4O 12 (CCTO) and orthorhombic CaTiO3 (CTO) phases at long range. Rietveld refinements indicate that excess Ca atoms added to the Ca 1-xCu3-xTi4O12 (x = 1.0) composition segregated in a CaTiO3 secondary phase suggesting that solubility limit of Ca atoms in the CaCu3Ti4O12 lattice was reached for this system. The FE-SEM images show that the Ca 1+xCu3-xTi4O12 (0 < x < 3) powders are composed of several agglomerated particles with irregular morphology. X-ray absorption near-edge structure spectroscopy (XANES) spectra indicated [TiO5Vo z]-[TiO6] complex clusters in the CaCu3Ti4O12 structure which can be associated with oxygen vacancies (Vo z = V o x, Vo •, and Vo ••) whereas in the CaTiO3 powder, this analysis indicated [TiO6]-[TiO6] complex clusters in the structure. Ultraviolet-visible (UV-vis) spectra and photoluminescence (PL) measurements for the analyzed systems revealed structural defects such as oxygen vacancies, distortions, and/or strains in CaCu3Ti4O12 and CaTiO3 lattices, respectively. © 2012 The American Ceramic Society.
Resumo:
In recent years, several studies have shown that concentrations of trace elements are altered in neoplastic breast tissues. However, the microenvironment and metabolic changes caused by tumors are complex and still not completely understood. Under this aspect, the combination of different techniques to investigate the role of trace elements in promoting and/or maintaining a tumor is interesting once the combination of information obtained by analytical techniques and immunohistochemical assays, associated with clinicopathological data, may allow a better metabolic understanding of trace elements in breast cancer. In this work, the role of the trace elements Ca, Fe, Cu and Zn in neoplastic breast tissues was investigated by X-ray fluorescence (XRF) techniques and immunohistochemical assays. We determined concentrations of Ca, Fe, Cu and Zn in normal and neoplastic breast tissues using energy dispersive XRF, and these values were used to set the positive or negative expression of elements in normal and neoplastic tissues. These expressions were correlated with the spatial distributions of trace elements (evaluated by micro-XRF) and with immunoexpression of matrix metalloproteinases (MMPs), tissue inhibitors of MMPs and vascular endothelial growth factor. The results revealed that the expression of the trace elements Fe, Cu and vascular endothelial growth factor are related, indicating that higher levels of these elements can be associated with the angiogenic process in breast cancer. Also, associations between Ca, Zn and MMPs expression have been observed, possibly because of the fact that both metals are present in these proteins. © 2013 John Wiley & Sons, Ltd.
Resumo:
Lead-free solid solutions (1-x)Bi0.5Na0.5TiO 3 (BNT)-xBaZr0.25Ti0.75O3 (BZT) (x=0, 0.01, 0.03, 0.05, and 0.07) were prepared by the solid state reaction method. X-ray diffraction (XRD) and Rietveld refinement analyses of 1-x(BNT)-x(BZT) solid solution ceramic were employed to study the structure of these systems. A morphotropic phase boundary (MPB) between rhombohedral and cubic structures occured at the composition x=0.05. Raman spectroscopy exhibited a splitting of the (TO3) mode at x=0.05 and confirmed the presence of MPB region. Scanning electron microcopy (SEM) images showed a change in the grain shape with the increase of BZT into the BNT matrix lattice. The temperature dependent dielectric study showed a gradual increase in dielectric constant up to x=0.05 and then decrease with further increase in BZT content. Maximum coercive field, remanent polarization and high piezoelectric constant were observed at x=0.05. Both the structural and electrical properties show that the solid solution has an MPB around x=0.05. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
This paper reports the influence of Sr- and Ca-substitution on the structural and ferroelectric properties of Pb1-xSrxZr0.40Ti0.60O3 (PSZT) and Pb1-xCaxZr0.40Ti0.60O3 (PCZT) ceramic systems. The dielectric measurements show that these substitutions cause a diffuse behavior in the dielectric permittivity curves for all samples. According to the X-ray absorption near-edge structure (XANES) spectra collected at Ti K- and LIII-edge, when Pb was replaced by Sr or Ca, a decrease in the local distortion around Ti atoms in the TiO6 octahedron could be observed. The O K-edge XANES spectra also revealed that the hybridization between O 2p and Pb 6sp states decreased as the amount of Sr or Ca atoms increased. Based on these results, it was possible to ascertain that the ferroelectric behavior in PSZT and PCZT samples bears a close correlation to the hybridization weakening between O 2p and Pb 6 sp states. © 2013 by American Scientific Publishers.
Resumo:
This paper reports on the structural characterization of Pb 1-xLaxZr0.40Ti0.60O3 (PLZT) ferroelectric ceramic compositions prepared by the conventional solid state reaction method. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to probe the local structure of PLZT samples that exhibits a normal and relaxor ferroelectric behavior. From the Zr K-edge and Pb LIII-edge EXAFS spectra, a considerable dissymmetry of Zr and Pb sites was observed in all samples, including those showing a long-range order cubic symmetry and a relaxor behavior. The Raman spectroscopy results confirmed the existence of a local disorder in all PLZT samples through the observation of Raman active vibrational modes. The variation in the intensity of the E(TO 3) mode in the PLZT relaxor samples indicates that the process of correlation between nanodomains stabilizes at temperatures lower than T m. © 2013 Elsevier B.V. All rights reserved.