904 resultados para Pathology. Durability. Concrete


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on the use of Construction and Demolition Waste (CDW) as recycled aggregate (in particular crushed concrete) for the production of new concrete has by now established the feasibility of this environmentally-friendly use of otherwise harmful waste. However, contrary to conventional concrete (CC), no large applications of concrete made with recycled concrete have been made and there is still a lack of knowledge in some areas of production and performance of recycled aggregate concrete (RAC). One issue concerns curing conditions: these greatly affect the performance of concrete made on site and some potential users of RAC wonder how RAC is affected by far-from-ideal curing conditions. This paper shows the main results of experiments to determine the influence of different curing conditions on the mechanical performance of concrete made with coarse recycled aggregate from crushed concrete. The properties analyzed include compressive strength, splitting tensile strength, modulus of elasticity, and abrasion resistance. The general conclusion in terms of mechanical performance is that RAC is affected by curing conditions roughly in the same way as CC. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apesar da enorme evolução tecnológica, os prazos na construção são cada vez mais reduzidos e os custos mais controlados, verificando-se uma despreocupação no que diz respeito a aspetos como a qualidade e durabilidade da construção das estruturas. Desperta assim nos técnicos, donos-de-obra, entidades executantes e projetistas a necessidade de avaliar o estado de conservação das estruturas de betão armado. Esta dissertação tem como objetivo principal abordar as anomalias e os mecanismos de deterioração mais correntes, os métodos de ensaio destrutivos ou parcialmente destrutivos mais utilizados e adequados, e abordar algumas das técnicas de reparação e reforço das estruturas de betão armado. Os principais danos apresentados nas estruturas são devidos a agentes físicos, mecânicos, biológicos e químicos. Podem ser devidos a causas diretas (acidentais ou naturais), que acarretam uma ação concreta sobre os elementos estruturais, e causas indiretas (humanas), diretamente ligadas com erros de projeto. É primordial fazer-se o levantamento de todas as anomalias existentes para se recorrer a um método de inspeção e ensaio. Consoante a necessidade de informação e estado da estrutura são selecionados os ensaios a realizar, podendo ser realizados “in situ” ou em laboratório. As técnicas de reparação e reforço são vistas como métodos para melhorar as condições da estrutura ao nível da segurança, desempenho, habitabilidade e durabilidade, prevenindo a evolução dos mecanismos de deterioração.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper intends to evaluate the capacity of producing concrete with a pre-established performance (in terms of mechanical strength) incorporating recycled concrete aggregates (RCA) from different sources. To this purpose, rejected products from the precasting industry and concrete produced in laboratory were used. The appraisal of the self-replication capacity was made for three strength ranges: 15-25 MPa, 35-45 MPa and 65-75 MPa. The mixes produced tried to replicate the strength of the source concrete (SC) of the RA. Only total, (100%) replacement of coarse natural aggregates (CNA) by coarse recycled concrete aggregates (CRCA) was tested. The results show that, both in mechanical and durability terms, there were no significant differences between aggregates from controlled sources and those from precast rejects for the highest levels of the target strength. Furthermore, the performance losses resulting from the RA's incorporation are substantially reduced when used medium or high strength SC's. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties. © 2014 RILEM

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is considered that using crushed recycled concrete as aggregate for concrete production is a viable alternative to dumping and would help to conserve abiotic resources. This use has fundamentally been based on the coarse fraction because the fine fraction is likely to degrade the performance of the resulting concrete. This paper presents results from a research work undertaken at Institut Superior Tecnico (IST), Lisbon, Portugal, in which the effects of incorporating two types of superplasticizer on the mechanical performance of concrete containing fine recycled aggregate were evaluated. The purpose was to see if the addition of superplasticizer would offset the detrimental effects associated with the use of fine recycled concrete aggregate. The experimental programme is described and the results of tests for splitting tensile strength, modulus of elasticity and abrasion resistance are presented. The relative performance of concrete made with recycled aggregate was found to decrease. However, the same concrete with admixtures in general exhibited a better mechanical performance than the reference mixes without admixtures or with a less active superplasticizer. Therefore, it is argued that the mechanical performance of concrete made with fine recycled concrete aggregates can be as good as that of conventional concrete, if superplasticizers are used to reduce the water-cement ratio of the former concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SCC mixes were produced: 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% fad, respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. © 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to evaluate the (mechanical and durability) performance of concrete made with coarse recycled concrete aggregates (CRCA) obtained using two crushing processes: primary crushing (PC) and primary plus secondary crushing (PSC). This analysis intends to select the most efficient production process of recycled aggregates (RA). The RA used here resulted from precast products (P), with strength classes of 20 MPa, 45 MPa and 65 MPa, and from laboratory-made concrete (L) with the same compressive strengths. The evaluation of concrete was made with the following tests: compressive strength; splitting tensile strength; modulus of elasticity; carbona-tion resistance; chloride penetration resistance; capillary water absorption; and water absorption by immersion. These findings contribute to a solid and innovative basis that allows the precasting industry to use without restrictions the waste it generates. © (2015) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research is the production of concrete with recycled aggregates (RA) from various CDW plants around Portugal. The influence of the RA collection location and consequently of their composition on the characteristics of the concrete produced was analysed. In the mixes produced in this research RA from five plants (Valnor, Vimajas, Ambilei, Europontal and Retria) were used: in three of them coarse and fine RA were analysed and in the remaining ones only coarse RA were used. The experimental campaign comprised two tests in fresh concrete (cone of Abrams slump and density) and eight in hardened concrete (compressive strength in cubes and cylinders, splitting tensile strength, modulus of elasticity, water absorption by immersion and capillarity, carbonation and chloride penetration resistance). It was found that the use of RA causes a quality decrease in concrete. However, there was a wide results scatter according to the plant where the RAs were collected, because of the variation in composition of the RA. It was also found that the use of fine RA causes a more significant performance loss of the concrete properties analysed than the use of coarse RA. © (2015) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.