907 resultados para Patch Clamp
Resumo:
1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)
Resumo:
Voltage-gated sodium channels drive the initial depolarization phase of the cardiac action potential and therefore critically determine conduction of excitation through the heart. In patients, deletions or loss-of-function mutations of the cardiac sodium channel gene, SCN5A, have been associated with a wide range of arrhythmias including bradycardia (heart rate slowing), atrioventricular conduction delay, and ventricular fibrillation. The pathophysiological basis of these clinical conditions is unresolved. Here we show that disruption of the mouse cardiac sodium channel gene, Scn5a, causes intrauterine lethality in homozygotes with severe defects in ventricular morphogenesis whereas heterozygotes show normal survival. Whole-cell patch clamp analyses of isolated ventricular myocytes from adult Scn5a(+/-) mice demonstrate a approximate to50% reduction in sodium conductance. Scn5a(+/-) hearts have several defects including impaired atrioventricular conduction, delayed intramyocardial conduction, increased ventricular refractoriness, and ventricular tachycardia with characteristics of reentrant excitation. These findings reconcile reduced activity of the cardiac sodium channel leading to slowed conduction with several apparently diverse clinical phenotypes, providing a model for the detailed analysis of the pathophysiology of arrhythmias.
Resumo:
The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca2+-activated Cl- conductance was present. When the intracellular Ca2+ was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na+ by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K+ > Cs+ > Na+ > Li+ and was inhibited by Ca2+, La3+, Gd3+, and amiloride. The K+/Na+ permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K+ was replaced by NMDG(+), but was not sensitive to substitution by Cs+. Finally, microfluorimetric experiments indicated the existence of a basal Ca2+ entry pathway, inhibited by La3+ and Gd3+. The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca2+ -dependent processes. (C) 2002 Elsevier Science (USA).
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
En el hipotálamo en desarrollo, el ácido gamma-amino butírico (GABA) produce depolarización neuronal, pudiendo incluso disparar potenciales de acción y causar la apertura de canales de calcio dependientes de voltaje. Esto se debe a que la concentración intracelular de Cl- es alta respecto al medio extracelular, por lo que en reposo el potencial de equilibrio de GABA es más positivo que el potencial de membrana. A medida que el desarrollo transcurre, la concentración intracelular de Cl- disminuye y se produce un cambio en la respuesta de depolarizante (etapa excitatoria) a hiperpolarizante (etapa inhibitoria). Se ha demostrado que este cambio ocurre también en neuronas hipotalámicas in vitro. El dimorfismo sexual del cerebro de los vertebrados es consecuencia de la acción del estrógeno aromatizado a partir de andrógenos segregados por el testículo durante el "periodo crítico" del desarrollo cerebral. Evidencias previas de nuestro y otros laboratorios pusieron de manifiesto diferencias en el crecimiento y diferenciación de neuronas que no podían atribuirse a la acción hormonal, ya que ocurren antes que se inicie el brusco aumento de la secreción gonadal, alrededor del día 18 de desarrollo embrionario en la rata (E18). Además de las diferencias morfológicas, encontramos diferencias sexuales en la forma que las neuronas hipotalámicas responden a muscimol, un agonista específico del receptor GABAA. A los 9 días in vitro (9 DIV) la respuesta a muscimol fue hiperpolarizante (etapa inhibitoria) y además fue de mayor amplitud, área y duración en machos respecto a hembras. Esto nos indica que las neuronas provenientes de embriones machos son intrínsecamente diferentes a las de embriones hembra aún antes de la acción organizadora de los esteroides sexuales. En base a estas evidencias nos propusimos continuar nuestros estudios sobre la participación de GABA en la determinación de diferencias sexuales en el cerebro antes de la acción organizadora de los esteroides gonadales. Para ello, en cultivos de neuronas hipotalámicas de E16 separados por sexos, estudiaremos:- la respuesta a muscimol de las neuronas, en la etapa excitatoria (2 DIV) de la acción de GABA.- las composición de subunidades de los receptores GABAA en la etapa excitatoria/inhibitoria de la acción de GABA.- la participación de los receptores GABAA sobre el crecimiento neurítico.- la activación de la vía de las MAP quinasas por muscimol.- la participación de los receptores GABAA sobre el crecimiento axonal inducido por estradiol in vitro.Toda la metodología propuesta es de uso habitual en nuestro laboratorio e involucra herramientas de la electrofisiología y la biología celular-molecular; como patch-clamp, cultivo de neuronas hipotalámicas, Western blot, RT-PCR, entre otras. Esperamos encontrar diferencias sexuales en la amplitud, área y duración de la respuesta de las neuronas hipotalámicas al muscimol a los 2 DIV, y que éstas se deban a una diferente composición de subunidades del receptor GABAA. En cuanto a la participación del receptor GABAA en la neuritogenesis, esperamos encontrar mayor longitud neurítica en neuronas macho como así también una activación sexualmente dimórfica de la vía de las MAP quinasas. Además esperamosque la acción de un antagonista del receptor GABAA interfiera con la axogénesis inducida por estradiol in vitro, característica que muestra diferencia sexual también a favor de los machos, lo que reforzaría nuestra hipótesis. La importancia y originalidad de este proyecto reside en la evaluación de la participación del sistema GABAérgico en la determinación de características que durante el desarrollo, podrían estar involucradas en la determinación de diferencias sexuales permanentes en el cerebro adulto independientemente de la acción de los esteroides sexuales. Hasta la fecha, no ha sido evaluada la influencia de los receptores GABAA en la diferenciación sexual del cerebro antes de la acción organizadora de los esteroides gonadales.
Resumo:
Los procesos neuronales adaptativos que se observan como consecuencia de la administración crónica de drogas de abuso, son similares a los procesos plásticos que subyacen al aprendizaje y la memoria. Por otra parte, el hipocampo forma parte del circuito neuronal responsable de los cambios conductuales observados como consecuencia de la administración crónica de diferentes drogas de abuso. De acuerdo con esto, resultados previos de nuestro laboratorio demostraron que la plasticidad sináptica en el hipocampo y las claves contextuales relacionadas con la administración de la droga, son relevantes para el incremento de la plasticidad hipocampal por la administración crónica de diazepam. Específicamente en el gyrus dentado hipocampal se han descripto fenómenos plásticos relacionados con la exposición crónica a psicofármacos, tales como facilitación en la transmisión sináptica, disminución de la proliferación celular y el aumento del factor de transcripción ?Fos B. Debido a la correlación existente entre los mecanismos de plasticidad neuronal, los aprendizaje asociativos y formación de memorias y aquellos responsables de la adicción, el objetivo general de este trabajo es caracterizar los cambios inducidos por la exposición repetida de cocaína y durante el periodo de abstinencia, en la excitabilidad neuronal de las células del gyrus dentado hipocampal, los canales iónicos afectados y los posibles mecanismos bioquímicos involucrados en dichos cambios, que podrían explicar las alteraciones conductuales observadas después de dicho tratamiento. Con este propósito, se estudiará: 1) la plasticidad sináptica (potenciación a largo plazo, LTP y depotenciación a largo plazo, LTD) en el gyrus dentado, mediante registros electrofisiológios multiunitarios; 2)la excitabilidad de las células granulares del gyrus dentado y la actividad de los canales iónicos, utilizando la técnica de patch clamp; 3) las alteraciones en la neurotransmisión glutamatergica, midiendo los niveles del neurotransmisor in vivo, utilizando la técnica de microdiálisis; el tráfico de receptores glutamatérgicos, utilizando la técnica de western-blott, 4) la participación del óxido nítrico en los cambios adaptativos observados como consecuencia de la sensibilización a cocaína. Además, mediante la utilización de técnicas comportamentales (avoidance inhibitorio), se estudiarán las posibles alteraciones de conductas que se sabe dependen de la integridad funcional del hipocampo.En relación a los resultados del presente proyecto se espera obtener un incremento en la plasticidad sináptica, en la excitabilidad neuronal de las células granulares del gyrus dentado de la formación hipocámpica, en la liberación extracelular de glutamato in vivo, como así también en el tráfico de receptores glutamatérgicos. Además se espera obtener un aumento de las vías de señalización activadas por la acción de glutamato, como la de óxido nítrico/GMPc, como consecuencia de la administración crónica de cocaína. Con este aumento global de la plasticidad sináptica hipocampal, las conductas dependientes de esta estructura debieran estar facilitadas, demostrando así una participación activa del hipocampo en los procesos de sensibilización y posiblemente en la adicción a psicoestimulantes. La caracterización del impacto del desarrollo de sensibilización a cocaína en la excitabilidad neuronal en el hipocampo, sobre los sistemas de neurotransmisión y las vías de señalización involucradas contribuirían a dilucidar los mecanismos que contribuyen al desarrollo de sensibilización a cocaína, los cuales podrían representar potenciales blancos terapéuticos para el tratamiento de la adicción, considerando principalmente aspectos específicos de la actividad eléctrica neuronal y la plasticidad sináptica asociada con las diferentes fases del ciclo de la adicción.
Resumo:
FUNDAMENTO: O tramadol é um analgésico de ação central cujo mecanismo de ação envolve a ativação de um receptor opioide. Anteriormente, mostramos que o tramadol e seus enantiômeros apresentavam um efeito inotrópico negativo sobre o músculo papilar no qual o (+)-enantiômero era mais potente que (-)- e (±)-tramadol. OBJETIVO: No presente trabalho, investigamos os efeitos do tramadol e seus enantiômeros na corrente de cálcio tipo L (I Ca-L). MÉTODOS: Os experimentos foram realizados em miócitos ventriculares isolados de ratos Wistar utilizando a técnica de patch-clamp com configuração de célula inteira. RESULTADOS: O tramadol (200 µM) reduziu a amplitude de pico do I Ca-L em potenciais de 0 a +50 mV. Em 0 mV, a I Ca-L foi reduzida em 33,7 ± 7,2%. (+)- e (-)-tramadol (200 µM) produziram uma inibição semelhante da I Ca-L, na qual a amplitude do pico foi reduzida em 64,4 ± 2,8% e 68,9 ± 5,8%, respectivamente a 0 mV (P > 0,05). O tramadol, (+)- e (-)-tramadol mudaram a inativação de estado estacionário de I Ca-L para potenciais de membrana mais negativos. Além disso, tramadol e (+)-tramadol alteraram significativamente a curva de recuperação dependente de tempo da I Ca-L para a direita e reduziram a recuperação de I Ca-L da inativação. A constante de tempo foi aumentada de 175,6 ± 18,6 a 305,0 ± 32,9 ms (P < 0,01) para o tramadol e de 248,1 ± 28,1 ms para 359,0 ± 23,8 ms (P < 0,05) para o (+)-tramadol. O agonista do receptor µ-opioide (DAMGO) não tem nenhum efeito na I Ca-L. CONCLUSÃO: A inibição da I Ca-L induzida por tramadol e seus enantiômeros não teve relação com a ativação de receptores opioides e poderia explicar, pelo menos em parte, seu efeito inotrópico negativo cardíaco.
Resumo:
Transplantation, embryonic stem cells, stroke, survival, differentiation, neurons, astrocytes, electrophysiology, Patch Clamp analysis, function
Resumo:
In modern society, thiamine deficiency (TD) remains an important medical condition linked to altered cardiac function. There have been contradictory reports about the impact of TD on heart physiology, especially in the context of cardiac excitability. In order to address this particular question, we used a TD rat model and patch-clamp technique to investigate the electrical properties of isolated cardiomyocytes from epicardium and endocardium. Neither cell type showed substantial differences on the action potential waveform and transient outward potassium current. Based on our results we can conclude that TD does not induce major electrical remodeling in isolated cardiac myocytes in either endocardium or epicardium cells.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.
Resumo:
Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.
Resumo:
The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.