947 resultados para Particulate emissions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potential risks of a secondary formation of polychlorinated dibenzodioxins/furans (PCDD/Fs) were assessed for two cordierite-based, wall-through diesel particulate filters (DPFs) for which soot combustion was either catalyzed with an iron- or a copper-based fuel additive. A heavy duty diesel engine was used as test platform, applying the eight-stage ISO 8178/4 C1 cycle. DPF applications neither affected the engine performance, nor did they increase NO, NO2, CO, and CO2 emissions. The latter is a metric for fuel consumption. THC emissions decreased by about 40% when deploying DPFs. PCDD/F emissions, with a focus on tetra- to octachlorinated congeners, were compared under standard and worst case conditions (enhanced chlorine uptake). The iron-catalyzed DPF neither increased PCDD/F emissions, nor did it change the congener pattern, even when traces of chlorine became available. In case of copper, PCDD/F emissions increased by up to 3 orders of magnitude from 22 to 200 to 12 700 pg I-TEQ/L with fuels of < 2, 14, and 110 microg/g chlorine, respectively. Mainly lower chlorinated DD/Fs were formed. Based on these substantial effects on PCDD/F emissions, the copper-catalyzed DPF system was not approved for workplace applications, whereas the iron system fulfilled all the specifications of the Swiss procedures for DPF approval (VERT).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). (Demirdjian et al., 2005). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Size distributions indicated that particles are within the nanometric range. Surface characteristics of sampled particles varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean levels of 8- hydroxy-2'-deoxyguanosine and several aldehydes (hexanal, heptanal, octanal, nonanal) increased during two consecutive days of exposure for non-smokers. In order to bring some insight into the relation between the particulate characteristics and the formation of ROS by-products, biomarkers levels will be discussed in relation with exposure variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road transport emissions are a major contributor to ambient particulate matter concentrations and have been associated with adverse health effects. Therefore, these emissions are targeted through increasingly stringent European emission standards. These policies succeed in reducing exhaust emissions, but do not address "nonexhaust" emissions from brake wear, tire wear, road wear, and suspension in air of road dust. Is this a problem? To what extent do nonexhaust emissions contribute to ambient concentrations of PM10 or PM2.5? In the near future, wear emissions may dominate the remaining traffic-related PM10 emissions in Europe, mostly due to the steep decrease in PM exhaust emissions. This underlines the need to determine the relevance of the wear emissions as a contribution to the existing ambient PM concentrations, and the need to assess the health risks related to wear particles, which has not yet received much attention. During a workshop in 2011, available knowledge was reported and evaluated so as to draw conclusions on the relevance of traffic-related wear emissions for air quality policy development. On the basis of available evidence, which is briefly presented in this paper, it was concluded that nonexhaust emissions and in particular suspension in air of road dust are major contributors to exceedances at street locations of the PM10 air quality standards in various European cities. Furthermore, wear-related PM emissions that contain high concentrations of metals may (despite their limited contribution to the mass of nonexhaust emissions) cause significant health risks for the population, especially those living near intensely trafficked locations. To quantify the existing health risks, targeted research is required on wear emissions, their dispersion in urban areas, population exposure, and its effects on health. Such information will be crucial for environmental policymakers as an input for discussions on the need to develop control strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we assessed the mixed exposure of highway maintenance workers to airborne particles, noise, and gaseous co-pollutants. The aim was to provide a better understanding of the workers' exposure to facilitate the evaluation of short-term effects on cardiovascular health endpoints. To quantify the workers' exposure, we monitored 18 subjects during 50 non-consecutive work shifts. Exposure assessment was based on personal and work site measurements and included fine particulate matter (PM2.5), particle number concentration (PNC), noise (Leq), and the gaseous co-pollutants: carbon monoxide, nitrogen dioxide, and ozone. Mean work shift PM2.5 concentrations (gravimetric measurements) ranged from 20.3 to 321 μg m(-3) (mean 62 μg m(-3)) and PNC were between 1.6×10(4) and 4.1×10(5) particles cm(-3) (8.9×10(4) particles cm(-3)). Noise levels were generally high with Leq over work shifts from 73.3 to 96.0 dB(A); the averaged Leq over all work shifts was 87.2 dB(A). The highest exposure to fine and ultrafine particles was measured during grass mowing and lumbering when motorized brush cutters and chain saws were used. Highest noise levels, caused by pneumatic hammers, were measured during paving and guardrail repair. We found moderate Spearman correlations between PNC and PM2.5 (r = 0.56); PNC, PM2.5, and CO (r = 0.60 and r = 0.50) as well as PNC and noise (r = 0.50). Variability and correlation of parameters were influenced by work activities that included equipment causing combined air pollutant and noise emissions (e.g. brush cutters and chain saws). We conclude that highway maintenance workers are frequently exposed to elevated airborne particle and noise levels compared with the average population. This elevated exposure is a consequence of the permanent proximity to highway traffic with additional peak exposures caused by emissions of the work-related equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: There are limited data on the composition and smoke emissions of 'herbal' shisha products and the air quality of establishments where they are smoked. METHODS: Three studies of 'herbal' shisha were conducted: (1) samples of 'herbal' shisha products were chemically analysed; (2) 'herbal' and tobacco shisha were burned in a waterpipe smoking machine and main and sidestream smoke analysed by standard methods and (3) the air quality of six waterpipe cafes was assessed by measurement of CO, particulate and nicotine vapour content. RESULTS: We found considerable variation in heavy metal content between the three products sampled, one being particularly high in lead, chromium, nickel and arsenic. A similar pattern emerged for polycyclic aromatic hydrocarbons. Smoke emission analyses indicated that toxic byproducts produced by the combustion of 'herbal' shisha were equivalent or greater than those produced by tobacco shisha. The results of our air quality assessment demonstrated that mean PM2.5 levels and CO content were significantly higher in waterpipe establishments compared to a casino where cigarette smoking was permitted. Nicotine vapour was detected in one of the waterpipe cafes. CONCLUSIONS: 'Herbal' shisha products tested contained toxic trace metals and PAHs levels equivalent to, or in excess of, that found in cigarettes. Their mainstream and sidestream smoke emissions contained carcinogens equivalent to, or in excess of, those of tobacco products. The content of the air in the waterpipe cafes tested was potentially hazardous. These data, in aggregate, suggest that smoking 'herbal' shisha may well be dangerous to health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent to which airborne particles penetrate into the human respiratory system is determined mainly by their size, with possible health effects. The research over the scientific evidence of the role of airborne particles in adverse health effects has been intensified in recent years. In the present study, seasonal variations of PM10 and its relation with anthropogenic activities have been studied by using the data from UK National Air Quality Archive over Reading, UK. The diurnal variation of PM10 shows a morning peak during 7:00-10:00 LT and an evening peak during 19:00-22:00 LT. 3 The variation between 12:00 and 17:00 LT remains more or less steady for PM10 with the minimum value of similar to 16 mu g m(-3). PM10 and black smoke (BS) concentrations during weekdays were found to be high compared to weekends. A reduction in the concentration of PM10 has been found during the Christmas holidays compared to normal days during December. Seasonal variations of PM10 showed high values during spring compared to other seasons. A linear relationship has been found between PM10 and NO, during March, July, November and December suggesting that most of the PM10 is due to local traffic exhaust emissions. PM10 and SO2 concentrations showed positive correlation with the correlation coefficient of R-2 = 0.65 over the study area. Seasonal variations of SO2 and NOx showed high concentrations during winter and low concentrations during spring. Fraction of BS in PM10 has been found to be 50% during 2004 over the study area. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first results of a study investigating the processes that control concentrations and sources of Pb and particulate matter in the atmosphere of Sao Paulo City Brazil Aerosols were collected with high temporal resolution (3 hours) during a four-day period in July 2005 The highest Pb concentrations measured coincided with large fireworks during celebration events and associated to high traffic occurrence Our high-resolution data highlights the impact that a singular transient event can have on air quality even in a megacity Under meteorological conditions non-conducive to pollutant dispersion Pb and particulate matter concentrations accumulated during the night leading to the highest concentrations in aerosols collected early in the morning of the following day The stable isotopes of Pb suggest that emissions from traffic remain an Important source of Pb in Sao Paulo City due to the large traffic fleet despite low Pb concentrations in fuels (C) 2010 Elsevier BV All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, gaseous emissions and particles are measured during start-up and stop periods for an over-fed boiler and an under-fed boiler. Both gaseous and particulate matter emissions are continuously measured in the laboratory. The measurement of gaseous emissions includes oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide and (NO). The emissions rates are calculated from measured emissions concentrations and flue gas flow. The behaviours of the boilers during start-up and stop periods are analysed and the emissions are characterised in terms of CO, NO, TOC and particles (PM2.5 mass and number). The duration of the characterised periods vary between two boilers due to the difference in type of ignition and combustion control. The under-fed boiler B produces higher emissions during start-up periods than the over-fed boiler A. More hydrocarbon and particles are emitted by the under-fed boiler during stop periods. Accumulated mass of CO and TOC during start-up and stop periods contribute a major portion of the total mass emitted during whole operation. However, accumulated mass of NO and PM during start-up and stop periods are not significant as the duration of emission peak is relatively short.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emissions from residential combustion appliances vary significantly depending on the firing behaviours and combustion conditions, in addition to combustion technologies and fuel quality. Although wood pellet combustion in residential heating boilers is efficient, the combustion conditions during start-up and stop phases are not optimal and produce significantly high emissions such as carbon monoxide and hydrocarbon from incomplete combustion. The emissions from the start-up and stop phases of the pellet boilers are not fully taken into account in test methods for ecolabels which primarily focus on emissions during operation on full load and part load. The objective of the thesis is to investigate the emission characteristics during realistic operation of residential wood pellet boilers in order to identify when the major part of the annual emissions occur. Emissions from four residential wood pellet boilers were measured and characterized for three operating phases (start-up, steady and stop). Emissions from realistic operation of combined solar and wood pellet heating systems was continuously measured to investigate the influence of start-up and stop phases on total annual emissions. Measured emission data from the pellet devices were used to build an emission model to predict the annual emission factors from the dynamic operation of the heating system using the simulation software TRNSYS. Start-up emissions are found to vary with ignition type, supply of air and fuel, and time to complete the phase. Stop emissions are influenced by fan operation characteristics and the cleaning routine. Start-up and stop phases under realistic operation conditions contribute 80 – 95% of annual carbon monoxide (CO) emission, 60 – 90% total hydrocarbon (TOC), 10 – 20% of nitrogen oxides (NO), and 30 – 40% particles emissions. Annual emission factors from realistic operation of tested residential heating system with a top fed wood pelt boiler can be between 190 and 400 mg/MJ for the CO emissions, between 60 and 95 mg/MJ for the NO, between 6 and 25 mg/MJ for the TOC, between 30 and 116 mg/MJ for the particulate matter and between 2x10-13 /MJ and 4x10-13 /MJ for the number of particles. If the boiler has the cleaning sequence with compressed air such as in boiler B2, annual CO emission factor can be up to 550 mg/MJ. Average CO, TOC and particles emissions under realistic annual condition were greater than the limits values of two eco labels. These results highlight the importance of start-up and stop phases in annual emission factors (especially CO and TOC). Since a large or dominating part of the annual emissions in real operation arise from the start-up and stop sequences, test methods required by the ecolabels should take these emissions into account. In this way it will encourage the boiler manufacturers to minimize annual emissions. The annual emissions of residential pellet heating system can be reduced by optimizing the number of start-ups of the pellet boiler. It is possible to reduce up to 85% of the number of start-ups by optimizing the system design and its controller such as switching of the boiler pump after it stops, using two temperature sensors for boiler ON/OFF control, optimizing of the positions of the connections to the storage tank, increasing the mixing valve temperature in the boiler circuit and decreasing the pump flow rate. For 85 % reduction of start-ups, 75 % of CO and TOC emission factors were reduced while 13% increase in NO and 15 % increase in particle emissions was observed.