966 resultados para Pancreatic Polypeptide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic β cells. Exercise training enhances β-cell mass in T1D. Here, we investigated how exercise signals β cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1β plus IFN-γ). Islets from control mice and β-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-β-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and β cells were exposed to IL-1β plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1β plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced β-cell death, induced by IL-1β plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals β-cell survival in T1D through IL-6.-Paula, F. M. M., Leite, N. C., Vanzela, E. C., Kurauti, M. A., Freitas-Dias, R., Carneiro, E. M., Boschero, A. C., and Zoppi, C. C. Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we aimed to evaluate the effects of exenatide (EXE) treatment on exocrine pancreas of nonhuman primates. To this end, 52 baboons (Papio hamadryas) underwent partial pancreatectomy, followed by continuous infusion of EXE or saline (SAL) for 14 weeks. Histological analysis, immunohistochemistry, Computer Assisted Stereology Toolbox morphometry, and immunofluorescence staining were performed at baseline and after treatment. The EXE treatment did not induce pancreatitis, parenchymal or periductal inflammatory cell accumulation, ductal hyperplasia, or dysplastic lesions/pancreatic intraepithelial neoplasia. At study end, Ki-67-positive (proliferating) acinar cell number did not change, compared with baseline, in either group. Ki-67-positive ductal cells increased after EXE treatment (P = 0.04). However, the change in Ki-67-positive ductal cell number did not differ significantly between the EXE and SAL groups (P = 0.13). M-30-positive (apoptotic) acinar and ductal cell number did not change after SAL or EXE treatment. No changes in ductal density and volume were observed after EXE or SAL. Interestingly, by triple-immunofluorescence staining, we detected c-kit (a marker of cell transdifferentiation) positive ductal cells co-expressing insulin in ducts only in the EXE group at study end, suggesting that EXE may promote the differentiation of ductal cells toward a β-cell phenotype. In conclusion, 14 weeks of EXE treatment did not exert any negative effect on exocrine pancreas, by inducing either pancreatic inflammation or hyperplasia/dysplasia in nonhuman primates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) is an important pest for Brazilian sugarcane. In the present study, we detected two distinct spots in hemolymph from septic injured larvae (HDs1 and HDs2), which are separated by 2DE gel electrophoresis. Both spots were subjected to in-gel tryptic digestion and MALDI-TOF/TOF analysis, which revealed the sequence VFGTLGSDDSGLFGK present in both HDs1 and HDs2. This sequence had homology and 80% identity with specific Lepidoptera antimicrobial peptides called gloverins. Analyses using the ImageMaster 2D software showed pI 8.94 of the HDs1 spot, which is similar to that described to Hyalophora gloveri gloverin (pI 8.5). Moreover, the 14-kDa molecular mass of the spot HDs1 is compatible to that of gloverins isolated from the hemolymph of Trichoplusia ni, Helicoverpa armigera and H. gloveri. Antimicrobial assays with partially purified fractions containing the HDs1 and HDs2 polypeptides demonstrated activity against Escherichia coli. This is the first report of antimicrobial polypeptides in D. saccharalis, and the identification of these peptides may help in the generation of new strategies to control this pest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipeptide syntheses starting from Ac-L-Tyr-OEt or Z-L-X-OMe (X: Asp, Tyr, Phe, Arg, Lys or Thr) and glycine amide in biphasic reaction media were achieved using two commercially available porcine pancreatic lipase (PPL) preparations (crude (cPPL) and purified PPL (pPPL)). Under the mild conditions employed, α-chymotrypsin, a pancreatic protease that also presents esterase activity, catalyzed Ac-L-Tyr-Gly-NH2 synthesis with high productivity. Product hydrolysis also occurred in most of the syntheses studied. Polyacrylamide gel electrophoresis, enzymatic assays employing specific chromogenic substrates and size-exclusion chromatography revealed that cPPL and pPPL contain contaminant proteases and, therefore, exhibit esterase and amidase activities. Overall, these data indicate that those contaminants may be the main catalysts of peptide bond synthesis when Nα-blocked-L-amino acid esters and the commercial PPL preparations are used. On the other hand, such data do not contest the possibility of using such enzyme preparations as an inexpensive source of catalysts for dipeptide synthesis under soft conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Toll-like receptor 4 (TLR4) is widely recognized as an essential element in the triggering of innate immunity, binding pathogen-associated molecules such as Lipopolysaccharide (LPS), and in initiating a cascade of pro-inflammatory events. Evidence for TLR4 expression in non-immune cells, including pancreatic beta-cells, has been shown, but, the functional role of TLR4 in the physiology of human pancreatic beta-cells is still to be clearly established. We investigated whether TLR4 is present in beta-cells purified from freshly isolated human islets and confirmed the results using MIN6 mouse insulinoma cells, by analyzing the effects of TLR4 expression on cell viability and insulin homeostasis. Results: CD11b positive macrophages were practically absent from isolated human islets obtained from nondiabetic brain-dead donors, and TLR4 mRNA and cell surface expression were restricted to beta-cells. A significant loss of cell viability was observed in these beta-cells indicating a possible relationship with TLR4 expression. Monitoring gene expression in beta-cells exposed for 48h to the prototypical TLR4 ligand LPS showed a concentration-dependent increase in TLR4 and CD14 transcripts and decreased insulin content and secretion. TLR4-positive MIN6 cells were also LPS-responsive, increasing TLR4 and CD14 mRNA levels and decreasing cell viability and insulin content. Conclusions: Taken together, our data indicate a novel function for TLR4 as a molecule capable of altering homeostasis of pancreatic beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carboxy terminal octapeptide of cholecystokinin (CCK8) is a hormone that binds high affinity receptors in a number of tissues including pancreas and pancreatic tumours. As part of our studies to develop effective gene therapy for the treatment of pancreatic cancers, we have investigated various gene delivery systems that depend on CCK8 receptor targeting. In this paper,we describe the synthesis of a CCK8-DNA complex designed to deliver foreign DNA to cholecystokinin receptor-positive cells. CCK8 was ligated to avidin and then complexed to linearis biotinylated DNA (pSV-CAT). The uptake of P-32-labelled CCK8-DNA complex by rat pancreatic acini was linear with time over 4 h with 65-70% of uptake inhibited by 100 nM CCK8. The complex appeared to be internalised since it could not be removed by acid wash. When administered intra-arterially, the complex was rapidly removed from the circulation with no evidence of targeted delivery to the pancreas, However, following a single intraperitoneal dose, the pancreas accumulated-5- 8% of the total administered complex by 24 h. These results suggest that peptide-dependent gene delivery to CCK receptor positive cells in vivo is feasible but, when administered directly into the circulation, diffusional barriers across the endothelium may limit distribution to peripheral tissues. Intraperitoneal administration therefore may be a useful alternative for targeting the pancreas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two synthetic analogues of murine epidermal. growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its H-1 chemical shifts suggested that its structure was also very similar to native.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kalata B1 is a member of a new family of polypeptides, isolated from. plants, which have a cystine knot structure embedded within an amide-cyclized backbone. This family of molecules are the largest known cyclic peptides, and thus, the mechanism of synthesis and folding is of great interest. To provide information about both these phenomena, we have synthesized kalata B1 using two distinct strategies. In the first, oxidation of the cysteine residues of a linear precursor peptide to form the correct disulfide bonds results in folding of the three-dimensional structure and preorganization of the termini in close proximity for subsequent cyclization. The second approach involved cyclization prior to oxidation. In the first method, the correctly folded peptide was produced only in the presence of partially hydrophobic solvent conditions. These conditions are presumably required to stabilize the surface-exposed hydrophobic residues. However,; in the synthesis,involving cyclization prior to oxidation, the cyclic reduced peptide folded to a significant degree in the absence of hydrophobic solvents and even more efficiently in the presence of hydrophobic solvents. Cyclization clearly has a major effect on the folding pathway and facilitates formation of the correctly disulfide-bonded form in aqueous solution; In addition to facilitating folding to a compact stable structure cyclization has an important effect on biological activity as assessed by hemolytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the p-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.