988 resultados para Palmetto Sites Program


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) follow-up, 4) turtle, and 5) random.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) random, 4) follow-up and 5) turtle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Fractures associated with bone fragility in older adults signal the potential for secondary fracture. Fragility fractures often precipitate further decline in health and loss of mobility, with high associated costs for patients, families, society and the healthcare system. Promptly initiating a coordinated, comprehensive pharmacological bone health and falls prevention program post-fracture may improve osteoporosis treatment compliance; and reduce rates of falls and secondary fractures, and associated morbidity, mortality and costs.Methods/design: This pragmatic, controlled trial at 11 hospital sites in eight regions in Quebec, Canada, will recruit community-dwelling patients over age 50 who have sustained a fragility fracture to an intervention coordinated program or to standard care, according to the site. Site study coordinators will identify and recruit 1,596 participants for each study arm. Coordinators at intervention sites will facilitate continuity of care for bone health, and arrange fall prevention programs including physical exercise. The intervention teams include medical bone specialists, primary care physicians, pharmacists, nurses, rehabilitation clinicians, and community program organizers.The primary outcome of this study is the incidence of secondary fragility fractures within an 18-month follow-up period. Secondary outcomes include initiation and compliance with bone health medication; time to first fall and number of clinically significant falls; fall-related hospitalization and mortality; physical activity; quality of life; fragility fracture-related costs; admission to a long term care facility; participants' perceptions of care integration, expectations and satisfaction with the program; and participants' compliance with the fall prevention program. Finally, professionals at intervention sites will participate in focus groups to identify barriers and facilitating factors for the integrated fragility fracture prevention program.This integrated program will facilitate knowledge translation and dissemination via the following: involvement of various collaborators during the development and set-up of the integrated program; distribution of pamphlets about osteoporosis and fall prevention strategies to primary care physicians in the intervention group and patients in the control group; participation in evaluation activities; and eventual dissemination of study results.Study/trial registration: Clinical Trial.Gov NCT01745068Study ID number: CIHR grant # 267395.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up. New for 2009 was the one-time inclusion of snapping turtle tissue as part of the Iowa RAFT sampling program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006a). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different types of monitoring sites: 1) status, 2) trend, and 3) follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of Iowans consuming fish. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was done to test the effectiveness of the Precision Fluency Shaping Program in controlling stuttering behaviour in adults. Two sites were chosen, each using the Precision Fluency Shaping Program to treat stuttering. At each clinic, a Speech Patbologist made a random selection of the subjects' pre- and post-therapy video-taped interviews, totalling 20 in all. During the interviews, the clients were asked questions and re~d a short passage to determine the frequency of stuttering in natural conversation and in reading. Perceptions of Stuttering Inventory questionnaires vvere also filled in before and after therapy. Two judges were trained to identify stuttering behaviour, and were given an inter-rater reliability test at selected intervals throughout the study. Protocols",:m.a;d;6 of each interview tape, were scored for (a) stuttering behaviour and (b) words spoken or read. An Analysis of Variance Repeated Measures Test was used to compare before and after scores of conversations, readings, and Perceptions of Stuttering Inventory to determine whether the Precision Fluency Shaping Program controlled stuttering behaviour significantly. A Pearson R Correlation Test was also administered to determine if a relationship existed bet\veen Perceptions of Stuttering Inventory and (i) conversation and (ii) reading scores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following phenomenologically oriented study examines and describes the relevance and effectiveness of professional development and continuing education programs for real-world situations of personal trainers. The participants were personal trainers, facility managers, and persons involved in the accreditation process. Data collection took place in 3 phases. The first phase consisted of the participants completing the PUMP Questionnaire, followed by focus groups with personal trainers and interviews with managers. The study's 3 data sets required reduction via a content analysis by question, content analysis by existential categories, and further thematic analysis using the lived relation existential dimension. The discussion contains the salient sites and issues of disconnect between clients, personal trainers, and facility managers and how they might affect the personal training experience. The intergenerational disconnect emphasized between Boomers as clients and Millennials as personal trainers requires further exploration and dialogue and underscores the need for different approaches to content and delivery of professional development and continuing education experiences for personal trainers and managers of fitness facilities.