63 resultados para Palmaria palmata
Resumo:
Peponapis bees are considered specialized pollinators of Cucurbita flowers, a genus that presents several species of economic value (squashes and pumpkins). Both genera originated in the Americas, and their diversity dispersion center is in Mexico. Ten species of Peponapis and ten species of Cucurbita (only non-domesticated species) were analyzed considering the similarity of their ecological niche characteristics with respect to climatic conditions of their occurrence areas (abiotic variables) and interactions between species (biotic variables). The similarity of climatic conditions (temperature and precipitation) was estimated through cluster analyses. The areas of potential occurrence of the most similar species were obtained through ecological niche modeling and summed with geographic information system tools. Three main clusters were obtained: one with species that shared potential occurrence areas mainly in deserts (P. pruinosa, P. timberlakei, C. digitata, C. palmata, C. foetidissima), another in moist forests (P. limitaris, P. atrata, C. lundelliana, C. o. martinezii) and a third mainly in dry forests (C. a. sororia, C. radicans, C. pedatifolia, P. azteca, P. smithi, P. crassidentata, P. utahensis). Some species with similar ecological niche presented potential shared areas that are also similar to their geographical distribution, like those occurring predominantly on deserts. However, some clustered species presented larger geographical areas, such as P. pruinosa and C. foetidissima suggesting other drivers than climatic conditions to shape their distributions. The domestication of Cucurbita and also the natural history of both genera were considered also as important factors. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
I sedimenti superficiali dei fondali circostanti l’arcipelago del Golfo di La Spezia sono stati analizzati dal punto di vista granulometrico e composizionale al fine di ottenere la mappatura delle concentrazioni di coralliti sub-fossili di Cladocora caespitosa nel sedimento. Mediante lo studio del sedimento campionato in trentacinque stazioni, sono state individuate tre zone di accumulo di coralliti: (i) in corrispondenza del capo occidentale dell’Isola Palmaria con le concentrazioni più elevate comprese tra il 25 e 55% (ii) sul lato sud-orientale della stessa isola con concentrazioni tra il 10 e 12% e (iii) una fascia contornante l’Isola del Tinetto con quantità inferiori al 3%. La concentrazione anomala di coralliti è il risultato dello scarico di materiali di dragaggio provenienti dal porto di La Spezia, scaricati al largo delle coste occidentali dell’arcipelago tra gli anni ‘50 e ’70 e progressivamente ridistribuiti verso sud-est dalla deriva litorale.
Resumo:
The vegetation of a small fjord and its adjacent open shore was documented by subaquatic video. The distribution of individual species of macroalgae and the composition of assemblages were compared with gradients of light availability, hydrography, slope inclination, substratum, and exposition to turbulence and ice. The sublittoral fringe is usually abraded by winterly ice floes and devoid of large, perennial algae. Below this zone, the upper sublittoral is dominated by Desmarestia menziesii on steep rock faces, where water movements become irregular, or by Ascoseira mirabilis and Palmaria decipiens on weakly inclined slopes with steady rolling water movements. In the central sublittoral above 15 m, where turbulence is still active, Desmarestia anceps is outcompeting all other species on solid substratum, However, the species is not able to persist on loose material under these conditions. Instead, Himantothallus grandifolius may occur. Deeper, where turbulence usually is negligible, Desmarestia anceps also covers loose material. The change of dominance to Himantothallus grandifolius in the deep sublittoral cannot completely be explained at present. Himantothallus grandifolius also prevails in a mixed assemblage under the influence of grounding icebergs. Most of the smaller algae are opportunists with different degrees of tolerance for turbulence, but some apparently need more stable microhabitats and thus are dependent from continuing suppression of competitive large phaeophytes.
Resumo:
Organisms populating benthic shallow water systems of both polar regions are adapted to a particularly harsh environment. We studied effects of freezing and the combination of high light intensities and low water temperatures on photosynthesis of key macroalgal species from the Arctic intertidal (Fucus distichus) and Antarctic subtidal (Palmaria decipiens). Photosynthetic activity of F. distichus specimens was monitored during the freezing process; there was a marked decrease in quantum yield with decreasing temperatures, and a rapid recovery as soon as temperatures increased again. Thus, under the experimental conditions tested, no indication of photodamage was found. Specimens of Palmaria were exposed to a combination of high light intensities and low water temperatures. A persistent impairment of photosynthetic activity occurred at 0°C at light intensities of 400 µmol photons m-2 s-1. In all treatments, there was a decreasing ratio of phycobiliproteins to chlorophyll a. Overall, the two studies provide baseline data for interpreting physiological responses of two important macroalgal species in an extreme environment, the polar coastal ecosystem.
Resumo:
Dataset containing macrobenthos data for samples collected during April 2008 in the North-West Black Sea (between 44°46' - 43°45' N latitude and 30° 11' - 29°35' E longitude). Macrobenthos sampling was done in 4 stations using a 0.14 m**2 Van Veen grab. Washing of the sample through two sieves - 1 mm and 0.25 mm mesh size; the material retained by the two sieves was examined at the binocular microscope; all animals were extracted, using fine tweezers and the species or group of species were identified and counted (in order to determine the density of populations); the larger organisms were measured and weighed (structure and biomass); for smaller organisms, the average wet weights inscribed in standard tables were used to calculate the biomass. Taxonomic identification was done at the GeoEcoMar by A. Teaca and T. Begun using the relevant taxonomic literature (Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev - in Russian, V 1-4; BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971 and BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971-Benthic ecological research to Black Sea. Comparative quantitative and qualitative analyse of pontic benthic fauna. Marine Ecology, 4, 1-357 (in Romanian).