992 resultados para Pair interactions
Resumo:
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel beta-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-(LFVPPLFV)-P-D-P-L-OMe (peptide 1) favors the beta-hairpin conformation nucleated by the type II' beta-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded beta-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C-alpha-C-beta(chi(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
Resumo:
In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one `dominant' female developing her ovaries and laying eggs. Ovaries of the remaining `subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The understanding of protein-protein interactions is indispensable in comprehending most of the biological processes in a cell. Small-scale experiments as well as large-scale high-throughput techniques over the past few decades have facilitated identification and analysis of protein-protein interactions which form the basis of much of our knowledge on functional and regulatory aspects of proteins. However, such rich catalog of interaction data should be used with caution when establishing protein-protein interactions in silico, as the high-throughput datasets are prone to false positives. Numerous computational means developed to pursue genome-wide studies on protein-protein interactions at times overlook the mechanistic and molecular details, thus questioning the reliability of predicted protein-protein interactions. We review the development, advantages, and shortcomings of varied approaches and demonstrate that by providing a structural viewpoint in terms of shape complementarity and interaction energies at protein-protein interfaces coupled with information on expression and localization of proteins homologous to an interacting pair, it is possible to assess the credibility of predicted interactions in biological context. With a focus on human pathogen Mycobacterium tuberculosis H37Rv, we show that such scrupulous use of details at the molecular level can predict physicochemically viable protein-protein interactions across host and pathogen. Such predicted interactions have the potential to provide molecular basis of probable mechanisms of pathogenesis and hence open up ways to explore their usefulness as targets in the light of drug discovery. (c) 2014 IUBMB Life, 66(11):759-774, 2014
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The survival protein SurE from Salmonella typhimurium (StSurE) is a dimeric protein that functions as a phosphatase. SurE dimers are formed by the swapping of a loop with a pair of beta-strands and a C-terminal helix between two protomers. In a previous study, the Asp230 and His234 residues were mutated to Ala to abolish a hydrogen bond that was thought to be crucial for C-terminal helix swapping. These mutations led to functionally inactive and distorted dimers in which the two protomers were related by a rotation of 167 degrees. New salt bridges involving Glu112 were observed in the dimeric interface of the H234A and D230A/H234A mutants. To explore the role of these salt bridges in the stability of the distorted structure, E112A, E112A/D230A, E112A/H234A, E112A/D230A/H234A, R179L/H180A/H234A and E112A/R179L/H180A/H234A mutants were constructed. X-ray crystal structures of the E112A, E112A/H234A and E112A/D230A mutants could be determined. The dimeric structures of the E112A and E112A/H234A mutants were similar to that of native SurE, while the E112A/D230A mutant had a residual rotation of 11 degrees between the B chains upon superposition of the A chains of the mutant and native dimers. The native dimeric structure was nearly restored in the E112A/H234A mutant, suggesting that the new salt bridge observed in the H234A and D230A/H234A mutants was indeed responsible for the stability of their distorted structures. Catalytic activity was also restored in these mutants, implying that appropriate dimeric organization is necessary for the activity of SurE.
Resumo:
Recent results in spinal research are challenging the historical view that the spinal reflexes are mostly hardwired and fixed behaviours. In previous work we have shown that three of the simplest spinal reflexes could be self-organised in an agonist-antagonist pair of muscles. The simplicity of these reflexes is given from the fact that they entail at most one interneuron mediating the connectivity between afferent inputs and efferent outputs. These reflexes are: the Myotatic, the Reciprocal Inibition and the Reverse Myotatic reflexes. In this paper we apply our framework to a simulated 2D leg model actuated by six muscles (mono- and bi-articular). Our results show that the framework is successful in learning most of the spinal reflex circuitry as well as the corresponding behaviour in the more complicated muscle arrangement. © 2012 Springer-Verlag.
Resumo:
In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.
Resumo:
Structural and thermodynamic properties of spherical particles carrying classical spins are investigated by Monte Carlo simulations. The potential energy is the sum of short range, purely repulsive pair contributions, and spin-spin interactions. These last are of the dipole-dipole form, with however, a crucial change of sign. At low density and high temperature the system is a homogeneous fluid of weakly interacting particles and short range spin correlations. With decreasing temperature particles condense into an equilibrium population of free floating vesicles. The comparison with the electrostatic case, giving rise to predominantly one-dimensional aggregates under similar conditions, is discussed. In both cases condensation is a continuous transformation, provided the isotropic part of the interatomic potential is purely repulsive. At low temperature the model allows us to investigate thermal and mechanical properties of membranes. At intermediate temperatures it provides a simple model to investigate equilibrium polymerization in a system giving rise to predominantly two-dimensional aggregates.
Resumo:
An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.
Resumo:
A total energy tight-binding model with a basis of just one s state per atom is introduced. It is argued that this simplest of all tight-binding models provides a surprisingly good description of the structural stability and elastic constants of noble metals. By assuming inverse power scaling laws for the hopping integrals and the repulsive pair potential, it is shown that the density matrix in a perfect primitive crystal is independent of volume, and structural energy differences and equations of state are then derived analytically. The model is most likely to be of use when one wishes to consider explicitly and self-consistently the electronic and atomic structures of a generic metallic system, with the minium of computation expense. The relationship to the free-electron jellium model is described. The applicability of the model to other metals is also considered briefly.
Resumo:
Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Cette étude qualitative a pour objectif de comprendre comment les interventions verbales des apprenantes et apprenants contribuent à la résolution effective des tâches linguistiques orales dans une classe d'anglais langue seconde selon la théorie Vygotskienne. La recherche a montré que les apprenantes et apprenants passent un temps considérable à discuter les énoncés ainsi que de la meilleure façon de résoudre les tâches linguistiques orales. Or, la recension des écrits a révélé que peu d'études ont tenté de comprendre ce que font les apprenantes et apprenants quand ils sont appelés à résoudre des tâches orales. Dans notre étude nous avons donc essayé de jeter la lumière sur ce phénomène. Les interactions verbales de 10 apprenantes et apprenants ont été enregistrées pendant la résolution de tâches linguistiques orales dans une classe d'anglais langue seconde de l'université de Sherbrooke. Pour analyser les données, nous avons utilisé des éléments de trois méthodes d'analyse, notamment la méthode microgénétique de Vygotsky, l'analyse interactionnelle et l'analyse des conversations. Les résultats ont révélé que les apprenantes et apprenants utilisent un nombre important de stratégies afin de mieux comprendre et résoudre les tâches linguistiques orales de façon efficace. Ils recourent notamment à leur langue maternelle, la répétition et la co-construction de phrases. La discussion de ces résultats a montré que la meilleure compréhension des stratégies utilisées par les apprenantes et apprenants ainsi que comment celle-ci [i.e. celles-ci] sont utilisées pourrait contribuer positivement à l'amélioration des techniques d'enseignement par tâches des langues secondes.
Resumo:
The magnetic properties and interactions between transition metal (TM) impurities and clusters in low-dimensional metallic hosts are studied using a first principles theoretical method. In the first part of this work, the effect of magnetic order in 3d-5d systems is addressed from the perspective of its influence on the enhancement of the magnetic anisotropy energy (MAE). In the second part, the possibility of using external electric fields (EFs) to control the magnetic properties and interactions between nanoparticles deposited at noble metal surfaces is investigated. The influence of 3d composition and magnetic order on the spin polarization of the substrate and its consequences on the MAE are analyzed for the case of 3d impurities in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy- axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic spin-orbit (SO) coupling contributions. The competition between ferromagnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail for n=1-4 as a function of the relative position between Fe atoms. Our results show an oscillatory behavior of the magnetic polarization of Pt atoms as a function of their distance from the magnetic impurities, which can be correlated to a long-ranged magnetic coupling of the Fe atoms. Exceptionally large variations of the induced spin and orbital moments at the Pt atoms are found as a function of concentration and magnetic order. Along with a violation of the third Hund’s rule at the Fe sites, these variations result in a non trivial behavior of the MAE. In the case of TM impurities and dimers at the Cu(111), the effects of surface charging and applied EFs on the magnetic properties and substrate-mediated magnetic interactions have been investigated. The modifications of the surface electronic structure, impurity local moments and magnetic exchange coupling as a result of the EF-induced metallic screening and charge rearrangements are analysed. In a first study, the properties of surface substitutional Co and Fe impurities are investigated as a function of the external charge per surface atom q. At large inter-impurity distances the effective magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations as a function of the distance which are not significantly affected by the considered values of q. For distances r < 10 Å, important modifications in the magnitude of ∆E, involving changes from FM to AF coupling, are found depending non-monotonously on the value and polarity of q. The interaction energies are analysed from a local perspective. In a second study, the interplay between external EF effects, internal magnetic order and substrate-mediated magnetic coupling has been investigated for Mn dimers on Cu(111). Our calculations show that EF (∼ 1eV/Å) can induce a switching from AF to FM ground-state magnetic order within single Mn dimers. The relative coupling between a pair of dimers also shows RKKY-like oscillations as a function of the inter-dimer distance. Their effective magnetic exchange interaction is found to depend significantly on the magnetic order within the Mn dimers and on their relative orientation on the surface. The dependence of the substrate-mediated interaction on the magnetic state of the dimers is qualitatively explained in terms of the differences in the scattering of surface electrons. At short inter-dimer distances, the ground-state configuration is determined by an interplay between exchange interactions and EF effects. These results demonstrate that external surface charging and applied EFs offer remarkable possibilities of manipulating the sign and strength of the magnetic coupling of surface supported nanoparticles.
Resumo:
Selection rules and matrix elements are derived for Coriolis interactions between vibrational levels due to rotation about (x, y) axes in symmetric top molecules. The theory is developed in detail for the case of interaction between an A1 and an E species vibrational level in a C3v molecule; perturbations to both the positions and the intensities of the rovibration transitions in the spectrum are considered. A computer program has been written which calculates exactly the perturbed spectrum of two interacting rovibration bands according to this model, the results being presented directly by a graph plotter connected to the computer. This has been used to interpret perturbations observed in two pairs of interacting fundamentals in the spectrum of CH3F (ν2 - ν5 and ν3 - ν6) and one pair in CD3Cl (ν2 - ν5). The resulting analysis of the observed spectrum leads to new values for some vibration-rotation interaction constants and also leads to a unique determination of the sign relationship between the dipole moment derivatives in each pair of interacting normal vibrations. These sign relations are summarized in Figs. 8, 12, and 15.