914 resultados para Pagliuca, William: The evolution of grammar
Resumo:
The architectonic features of the thalamic ventrobasal complex (Vb) of two species of Megachiropteran (Grey-headed flying fox, Pteropus poliocephalus, and the Eastern tube-nosed bat, Nyctimene robinsoni) are compared with those of a Microchiropteran (Australian ghost bat, Macroderma gigas). The somatosensory system was chosen for comparison as it represents a sensory system that has undergone analogous modifications in both Chiropteran lineages (the evolution of the wing). The components of Vb were examined as there are taxon-specific features in this region of the brain. Within the Megachiropteran Vb, four subnuclei were recognized: the ventral posterior medial (VPM), the ventral posterior lateral (VPL), the ventral posterior inferior (VPI), and the basal ventral medial (VMb). In the ghost bat only VPM and VPL were identified with certainty. No VPI was evident in the ghost bat, however a putative VMb was observed. Vb of the ghost bat also lacked the arcuate lamina, which distinguishes VPM from VPL in the Megachiropterans and many other mammals. These taxon-specific differences lend support to the proposal that the order Chiroptera has a diphyletic origin.
Resumo:
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Resumo:
We inferred the phylogeny of 33 species of ticks from the subfamilies Rhipicephalinae and Hyalomminae from analyses of nuclear and mitochondrial DNA and morphology. We used nucleotide sequences from 12S rRNA, cytochrome c oxidase I, internal transcribed spacer 2 of the nuclear rRNA, and 18S rRNA. Nucleotide sequences and morphology were analyzed separately and together in a total-evidence analysis. Analyses of the five partitions together (3303 characters) gave the best-resolved and the best-supported hypothesis so far for the phylogeny of ticks in the Rhipicephalinae and Hyalomminae, despite the fact that some partitions did not have data for some taxa. However, most of the hidden conflict (lower support in the total-evidence analyses compared to that in the individual analyses) was found in those partitions that had taxa without data. The partitions with complete taxonomic sampling had more hidden support (higher support in the total-evidence analyses compared to that in the separate-partition analyses) than hidden conflict. Mapping of geographic origins of ticks onto our phylogeny indicates an African origin for the Rhipicephalinae sensu lato (i.e., including Hyalomma spp.), the Rhipicephalus-Boophilus lineage, the Dermacentor-Anocentor lineage, and the Rhipicephalus-Booophilus-Nosomma-Hyalomma-Rhipicentor lineage. The Nosomma-Hyalomma lineage appears to have evolved in Asia. Our total-evidence phylogeny indicates that (i) the genus Rhipicephalus is paraphyletic with respect to the genus Boophilus, (ii) the genus Dermacentor is paraphyletic with respect to the genus Anocentor, and (iii) some subgenera of the genera Hyalomma and Rhipicephalus are paraphyletic with respect to other subgenera in these genera. Study of the Rhipicephalinae and Hyalomminae over the last 7 years has shown that analyses of individual datasets (e.g., one gene or morphology) seldom resolve many phylogenetic relationships, but analyses of more than one dataset can generate well-resolved phylogenies for these ticks. (C) 2001 Academic Press.
Resumo:
The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.
Resumo:
Mangroves are often described as a group of plants with common features and common origins based mostly on their broad distributional patterns, together with an erroneous view of comparable abilities in long-distance dispersal. However, whilst mangroves have common needs to adapt to rigorous environmental constraints associated with regular seawater inundation, individual taxa have developed different strategies and characteristics. Since mangroves are a genetically diverse group of mostly flowering plants, they may also have evolved at quite different geological periods, dispersed at different rates from different locations and developed different adaptive strategies. Current distributions of individual taxa show numerous instances of unusual extant distribution which demonstrate finite dispersal limitations, especially across open water. Our preliminary assessment of broad distribution and discontinuities reveals important patterns. Discontinuities, in the absence of current dispersal barriers, may be explained by persistent past barriers. As we learn more about discontinuities, we are beginning to appreciate their immense implications and what they might tell us about past geological conditions and how these might have influenced the distribution and evolution of mangroves. In this article, we describe emerging patterns in genetic relationships and distributions based on both current knowledge and preliminary results of our studies of molecular and morphometric characteristics of Rhizophora species in the Indo West Pacific region.
Resumo:
Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons (CHCs) when sympatric with Drosophila birchii. We have previously shown that the naturally occurring pattern of reproductive character displacement can be experimentally replicated by exposing field allopatric populations of D. serrata to experimental sympatry with D. birchii. Here, we tested whether the repeated evolution of reproductive character displacement in natural and experimental populations was a consequence of genetic constraints on the evolution of CHCs. The genetic variance-covariance (G) matrices for CHCs were determined for populations of D. serrata that had evolved in either the presence or absence of D. birchii under field and experimental conditions. Natural selection on mate recognition under both field and experimental sympatric conditions increased the genetic variance in CHCs consistent with a response to selection based on rare alleles. A close association between G eigenstructure and the eigenstructure of the phenotypic divergence (D) matrix in natural and experimental populations suggested that G matrix eigenstructure may have determined the direction in which reproductive character displacement evolved during the reinforcement of mate recognition.
Resumo:
INTRODUCTION: The evolution of virulence in host-parasite relationships has been the subject of several publications. In the case of HIV virulence, some authors suggest that the evolution of HIV virulence correlates with the rate of acquisition of new sexual partners. In contrast some other authors argue that the level of HIV virulence is independent of the sexual activity of the host population. METHODS: Provide a mathematical model for the study of the potential influence of human sexual behaviour on the evolution of virulence of HIV is provided. RESULTS: The results indicated that, when the probability of acquisition of infection is a function both of the sexual activity and of the virulence level of HIV strains, the evolution of HIV virulence correlates positively with the rate of acquisition of new sexual partners. CONCLUSION: It is concluded that in the case of a host population with a low (high) rate of exchange of sexual partners the evolution of HIV virulence is such that the less (more) virulent strain prevails.
Resumo:
The emergence of smartphones with Wireless LAN (WiFi) network interfaces brought new challenges to application developers. The expected increase of users connectivity will impact their expectations for example on the performance of background applications. Unfortunately, the number and breadth of the studies on the new patterns of user mobility and connectivity that result from the emergence of smartphones is still insufficient to support this claim. This paper contributes with preliminary results on a large scale study of the usage pattern of about 49000 devices and 31000 users who accessed at least one access point of the eduroam WiFi network on the campuses of the Lisbon Polytechnic Institute. Results confirm that the increasing number of smartphones resulted in significant changes to the pattern of use, with impact on the amount of traffic and users connection time.
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática