882 resultados para Packed-bed bioreactor
Resumo:
School of Environmental Studies, Cochin University of Science and Technology
Resumo:
Heat transfer in a packed bed of sugar cane bagasse, which is a potential biofuel used in cars and industries, percolated with air flow was studied. The fibers were washed, sieved, oven dried, and afterwards moisture content was adjusted to 4 and 47%. The relative humidity of the air, packing bed technique, and the initial moisture content of the porous media did not have a significant effect on the outlet temperature of the bed. Air flow rate influenced the averaged radial temperature profile, but not the temperature measured at the nearest position to the tube wall. At the end of the experiments, moisture segregation was observed, the lower bed depths being drier than the higher ones. This is an abstract of a paper presented at the 18th International Congress of Chemical Process Engineering (Praque, Czech Republic 8/24-28/2008).
Resumo:
The fluidized bed reactor has successfully been used to perform biotechnological processes addressed to the production of high added value. The present work evaluates hydrodynamic parameters of a bench-scale fluidized bed reactor with cells of the yeast Candida guilliermondii immobilized either in calcium alginate beads or in polyvinyl alcohol (PVA). The effects of the following variables on cell immobilization were evaluated at 30 degrees C and feeding a synthetic medium containing 50 g L-1 xylose: total particle density (cells plus support), terminal velocity, particle drag force, minimum fluidization velocity and bed porosity. According to the results obtained, the reactor was shown to operate like a fixed-bed bioreactor at xi < 0.5 and a fluidized bed bioreactor at xi > 0.5. The maximum flow rate needed to obtain maximum bed fluidization in the reactor was equal to the terminal velocity of the immobilized cell particles. Particles of cells immobilized within these supports showed values of drag coefficient lower than those reported for other high-density supports. The evaluation of these hydrodynamic characteristics lead to an adequate bed fluidization inside the reactor, thus improving oxygen transference and availability in the fermentation medium, making the process more viable for future scale-up. (c) 2008 Society of Chemical Industry.
Resumo:
This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The conventional analysis for the estimation of the tortuosity factor for transport in porous media is modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds shows good agreement with a network model of randomly oriented intersecting pores for porosities upto about 50 percent, which is the region of practical interest. The predictions based on this network model are also found to be in better agreement with the data of Currie than earlier expressions developed for unconsolidated and grainy media.
Resumo:
An experimental study has been carried out for the gas-liquid two-phase flow in a packed bed simulating conditions of the gas and liquid flows in the lower part of blast furnace. The localised liquid flow phenomenon in presence of gas cross flow, which usually occurs around the cohesive zone and raceway in blast furnace, was investigated in detail. Such liquid flow is characterised in terms of liquid shift distance or liquid shift angle that can effectively be measured by the experiments involved in the current study. It is found that liquid shift angle does not significantly increase or decrease with different packing depth. This finding supports the hypothesis of the force balance model where a vectorial relationship among acting forces, i.e. gas drag force, gravitational force and solid-liquid friction force, and liquid shift angle does exist. Liquid shift angle is inversely proportional to particle size and liquid density, and proportional to square of gas superficial velocity, but is almost independent on liquid flowrate and liquid viscosity. The gas-liquid drag coefficient, an important aspect for quantifying the interaction between gas and liquid flows, was conceptually modified based on the discrete feature of liquid flow through a packed bed and evaluated by the combined theoretical and experimental investigation. Experimental measurements suggest that the gas-liquid drag coefficient is approximately a constant (C-DG(')=5.4+/-1.0) and is independent on liquid properties, gas velocity and packing structure. The result shows a good agreement with previous experimental data and prediction of the existing liquid flow model.
Resumo:
The unsaturated flow of liquid through packed beds of large particles was studied using six different liquids, all with contact angles greater than 90degrees on the bed packing (wax spheres of 9, 15 and 19.4 mm diameter). The liquid flow was discrete in nature, as drops for low flow rates and rivulets for high flow rates. For unsaturated liquid flows, the actual percolation velocity, not superficial velocity, should be used to characterize the flow. The percolation velocity did not vary with packed-bed depth, but was a strong function of liquid flow rate, liquid and particle properties. Effects of liquid and particle properties (but not flow rate) are well captured by a simple correlation between the liquid-particle friction factor and Reynolds number based on actual percolation velocities. Liquid dispersion, characterized by the maximum dispersion angle, varies significantly with liquid and particle properties. The tentative correlation suggested here needs further validation for a wider range of conditions.
Resumo:
Combustion of wood is increasing because of the needs of decreasing the emissions of carbon dioxide and the amount of waste going to landfills. Wood based fuels are often scattered on a large area. The transport distances should be short enough to prevent too high costs, and so the size of heating and power plants using wood fuels is often rather small. Combustion technologies of small-size units have to be developed to reach efficient and environmentally friendly energy production. Furnaces that use different packed bed combustion or gasification techniques areoften most economic in small-scale energy production. Ignition front propagation rate affects the stability, heat release rate and emissions of packed bed combustion. Ignition front propagation against airflow in packed beds of wood fuels has been studied. The research has been carried out mainly experimentally. Theoretical aspects have been considered to draw conclusions about the experimental results. The effects of airflow rate, moisture content of the fuel, size, shape and density of particles, and porosity of the bed on the propagation rate of the ignition front have been studied. The experiments were carried out in a pot furnace. The fuels used in the experiments were mainly real wood fuels that are often burned in the production of energy. The fuel types were thin wood chips, saw dust, shavings, wood chips, and pellets with different sizes. Also a few mixturesof the above were tested. Increase in the moisture content of the fuel decreases the propagation rates of the ignition front and makes the range of possible airflow rates narrower because of the energy needed for the evaporation of water and the dilution of volatile gases due to evaporated steam. Increase in the airflow rate increases the ignition rate until a maximum rate of propagation is reached after which it decreases. The maximum flame propagation rate is not always reached in stoichiometric combustion conditions. Increase in particle size and density transfers the optimum airflow rate towards fuel lean conditions. Mixing of small and large particles is often advantageous, because small particles make itpossible to reach the maximum ignition rate in fuel rich conditions, and large particles widen the range of possible airflow rates. A correlation was found forthe maximum rate of ignition front propagation in different wood fuels. According to the correlation, the maximum ignition mass flux is increased when the sphericity of the particles and the porosity of the bed are increased and the moisture content of the fuel is decreased. Another fit was found between sphericity and porosity. Increase in sphericity decreases the porosity of the bed. The reasons of the observed results are discussed.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
In the present study the development of bioreactors for nitrifying water in closed system hatcheries of penaeid and non-penaeid prawns. This work is an attempt in this direction to cater to the needs of aquaculture industry for treatment and remediation of ammonia and nitrate in penaeid and non-penaeid hatcheries, by developing nitrifying bacteria allochthonous to the particular environment under consideration, and immobilizing them on an appropriately designed support materials configured as reactors. Ammonia toxicity is the major limiting factors in penaeid and non-penaeid hatchery systems causing lethal and sublethal effects on larvae depending on the pH values. Pressing need of the aquaculture industry to have a user friendly and economically viable technology for the removal of ammonia, which can be easily integrated to the existing hatchery designs without any major changes or modifications. Only option available now is to have biological filters through which water can be circulated for the oxidation of ammonia to nitrate through nitrite by a group of chemolithotrophs known as nitrifying bacteria. Two types of bioreactors have been designed and developed. The first category named as in situ stringed bed suspended bioreactor(SBSBR) was designed for use in the larval rearing tanks to remove ammonia and nitrite during larval rearing on a continuous basis, and the other to be used for nitrifying freshly collected seawater and spent water named as ex situ packed bed bioreactior(PBBR). On employing the two reactors together , both penaeid and non-penaeid larval rearing systems can be made a closed recirculating system at least for a season. A survey of literature revealed that the in situ stringed bed suspended reactor developed here is unique in its design, fabrication and mode of application.
Resumo:
Studies have been carried out on the heat transfer in a packed bed of glass beads percolated by air at moderate flow rates. Rigorous statistic analysis of the experimental data was carried out and the traditional two parameter model was used to represent them. The parameters estimated were the effective radial thermal conductivity, k, and the wall coefficient, h, through the least squares method. The results were evaluated as to the boundary bed inlet temperature, T-o, number of terms of the solution series and number of experimental points used in the estimate. Results indicated that a small difference in T-o was sufficient to promote great modifications in the estimated parameters and in the statistical properties of the model. The use of replicas at points of high parametric information of the model improved the results, although analysis of the residuals has resulted in the rejection of this alternative. In order to evaluate cion-linearity of the model, Bates and Watts (1988) curvature measurements and the Box (1971) biases of the coefficients were calculated. The intrinsic curvatures of the model (IN) tend to be concentrated at low bed heights and those due to parameter effects (PE) are spread all over the bed. The Box biases indicated both parameters as responsible for the curvatures PE, h being somewhat more problematic. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE