998 resultados para PUMP CELLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of moist cylindrical shaped food particulates during fluidised bed drying. Cylindrical particles were prepared from Green beans with three different length:diameter ratios, 3:1, 2:1 and 1:1. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shortage of donor hearts for patients with end stage heart failure has accelerated the development of ventricular assist devices (VAD) that act as a replacement heart. Mechanical devices involving pulsatile, axial and centrifugal devices have been proposed. Recent clinical developments indicate that centrifugal devices are not only beneficial for bridge to transplantation applications, but may also aid myocardial recovery. The results of a recent study have shown that patients who received a VAD have extended lives and improved quality of life compared to recipients of drug therapy. Unfortunately 25% of these patients develop right heart failure syndrome, sepsis and multi-organ failure. It was reported that 17% of patients initially receiving an LVAD later required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (BVAD). Current BVAD technology is either too bulky or necessitates having to implant two pumps working independently. The latter requires two different controllers for each pump leading to the potential complication of uneven flow dynamics and the requirements for a large amount of body space. This paper illustrates the combination of the LVAD and RVAD as one complete device to augment the function of both the left and right cardiac chambers with double impellers. The proposed device has two impellers rotating in counter directions, hence eliminating the necessity of the body muscles and tubing/heart connection to restrain the pump. The device will also have two separate chambers with independent rotating impeller for the left and right chambers. A problem with centrifugal impellers is the fluid stagnation underneath the impeller. This leads to thrombosis and blood clots.This paper presents the design, construction and location of washout hole to prevent thrombus for a Bi-VAD centrifugal pump. Results using CFD will be used to illustrate the superiority of our design concept in terms of preventing thrombus formation and hemolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a recent study have shown that there is a severe shortage of donor hearts to meet the demand of patients suffering from acute heart failures, and patients who received a left ventricular assist device (LVAD) have extended lives. However, some of them develop right heart failure syndrome, and these patients required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (Bi-VAD). Computational Fluid Dynamics (CFD) is useful for estimating blood damage for design of a Bi-VAD centrifugal heart pump to meet the demand of the left and right ventricles of a normal hearts with a flow rate of 5 lit/min and the supply pressure of 100 mmHg for the left ventricle and 20 mmHg for the right ventricle. Numerical studies have been conducted to predict pressure, flow rate, the velocity profiles, and streamlines in a continuous flow Bi-VAD using. Based on the predictions of numerical simulations, only few flow regions in the Bi-VAD exhibited signs of velocity profiles and stagnation points, thereby signifying potentially low levels of thrombogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Inflammation is a protective attempt to facilitate the removal of damaged tissue and to initiate the healing response in other tissues. However, after spinal cord injury (SCI), this response is prolonged leading to secondary degeneration and glial scarring. Here, we investigate the potential of sustained delivery of pro-inflammatory factors vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) to increase early inflammatory events and promote inflammatory resolution. Method Animal ethics approval was obtained from the Queensland University of Technology. Adult Wistar-Kyoto rats (12-16 weeks old) were subjected to laminectomies and T10 hemisections. Animals were then randomised to treatment (implantation of osmotic pump (Alzet) loaded with 5ug VEGF & 5 ug PDGF) or control groups (lesion control or lesion plus pump delivering PBS). Rats were sacrificed at one month and the spinal cords were harvested and examined by immunohistology, using anti-neurofilament-200(NF200) and anti- ionized calcium binding adapter molecule 1 (Iba1). One way ANOVA was used for statistic analysis. Results At 1 month, active pump-treated cords showed a high level of axonal filament throughout the defects as compared to the control groups. The mean lesion size, as measured by NF200, was 0.47mm2 for the lesion control, 0.39mm2 for the vehicle control and 0.078mm2 for the active pump group. Significant differences were detected between the active pump group and the two control groups (AP vs LC p= 0.017 AG vs VC p= 0.004). Iba-1 staining also showed significant differences in the post-injury inflammatory response. Discussion We have shown that axons and activated microglia are co-located in the lesion of the treated cord. We hypothesise the delivery of VEGF/PDGF increases the local vessel permeability to inflammatory cells and activates these along with the resident microglia to threshold population, which ultimately resolved the prolonged inflammation. Here, we have shown that maintaining the inflammatory signals for at least 7 days improved the morphology of the injured cord. Conclusion This study has shown that boosting inflammation, by delivery VEGF/PDGF, in the early phase of SCI helps to reduce secondary degeneration and may promote inflammation resolution. This treatment may provide a platform for other neuro-regenrative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, mesenchymal stem cells (MSCs) from various tissues have been reported, but the yield and differentiation potential of different tissue-derived MSCs is still not clear. This study was undertaken in an attempt to investigate the multilineage stem cell potential of bone and cartilage explant cultures in comparison with bone marrow derived mesenchymal stem cells (BMSCs). The results showed that the surface antigen expression of tissue-derived cells was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing markers related to adhesion (CD29, CD166) and stem cells (CD90, CD105). The tissue-derived cells were able to differentiate into osteoblast, chondrocyte and adipocyte lineage pathways when stimulated in the appropriate differentiating conditions. However, compared with BMSCs, tissue-derived cells showed less capacity for multilineage differentiation when the level of differentiation was assessed in monolayer culture by analysing the expression of tissue-specific genes by reverse transcription polymerase chain reaction (RT-PCR) and histology. In high density pellet cultures, tissue-derived cells were able to differentiate into chondrocytes, expressing chondrocyte markers such as proteoglycans, type II collagen and aggrecan. Taken together, these results indicate that cells derived from tissue explant cultures reserved certain degree of differentiation properties of MSCs in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine the cellular aging of osteophyte-derived mesenchymal cells (oMSCs) in comparison to patient-matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell-cycle-related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase-positive cells were found to be located perivascularly and were Stro-1 positive. Fifteen cell-cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839-850, 2009. (c) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of an effective preservation strategy to fulfill off-the-shelf availability of tissue-engineered constructs (TECs) is demanded for realizing their clinical potential. In this study, the feasibility of vitrification, ice-free cryopreservation, for precultured ready-to-use TECs was evaluated. To prepare the TECs, bone marrow-derived porcine mesenchymal stromal cells (MSCs) were seeded in polycaprolactone-gelatin nanofibrous scaffolds and cultured for 3 weeks before vitrification treatment. The vitrification strategy developed, which involved exposure of the TECs to low concentrations of cryoprotectants followed by a vitrification solution and sterile packaging in a pouch with its subsequent immersion directly into liquid nitrogen, was accomplished within 11min. Stepwise removal of cryoprotectants, after warming in a 38 degrees C water bath, enabled rapid restoration of the TECs. Vitrification did not impair microstructure of the scaffold or cell viability. No significant differences were found between the vitrified and control TECs in cellular metabolic activity and proliferation on matched days and in the trends during 5 weeks of continuous culture postvitrification. Osteogenic differentiation ability in vitrified and control groups was similar. In conclusion, we have developed a time- and cost-efficient cryopreservation method that maintains integrity of the TECs while preserving MSCs viability and metabolic activity, and their ability to differentiate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.