1000 resultados para PTSN NANOPARTICLES
Resumo:
A bioassay technique, based on surface-enhanced Raman scattering (SERS) tagged gold nanoparticles encapsulated with a biotin functionalised polymer, has been demonstrated through the spectroscopic detection of a streptavidin binding event. A methodical series of steps preceded these results: synthesis of nanoparticles which were found to give a reproducible SERS signal; design and synthesis of polymers with RAFT-functional end groups able to encapsulate the gold nanoparticle. The polymer also enabled the attachment of a biotin molecule functionalised so that it could be attached to the hybrid nanoparticle through a modular process. Finally, the demonstrations of a positive bioassay for this model construct using streptavidin/biotin binding. The synthesis of silver and gold nanoparticles was performed by using tri-sodium citrate as the reducing agent. The shape of the silver nanoparticles was quite difficult to control. Gold nanoparticles were able to be prepared in more regular shapes (spherical) and therefore gave a more consistent and reproducible SERS signal. The synthesis of gold nanoparticles with a diameter of 30 nm was the most reproducible and these were also stable over the longest periods of time. From the SERS results the optimal size of gold nanoparticles was found to be approximately 30 nm. Obtaining a consistent SERS signal with nanoparticles smaller than this was particularly difficult. Nanoparticles more than 50 nm in diameter were too large to remain suspended for longer than a day or two and formed a precipitate, rendering the solutions useless for our desired application. Gold nanoparticles dispersed in water were able to be stabilised by the addition of as-synthesised polymers dissolved in a water miscible solvent. Polymer stabilised AuNPs could not be formed from polymers synthesised by conventional free radical polymerization, i.e. polymers that did not possess a sulphur containing end-group. This indicated that the sulphur-containing functionality present within the polymers was essential for the self assembly process to occur. Polymer stabilization of the gold colloid was evidenced by a range of techniques including, visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectroscopy. After treatment of the hybrid nanoparticles with a series of SERS tags, focussing on 2-quinolinethiol the SERS signals were found to have comparable signal intensity to the citrate stabilised gold nanoparticles. This finding illustrates that the stabilization process does not interfere with the ability of gold nanoparticles to act as substrates for the SERS effect. Incorporation of a biotin moiety into the hybrid nanoparticles was achieved through a =click‘ reaction between an alkyne-functionalised polymer and an azido-functionalised biotin analogue. This functionalized biotin was prepared through a 4-step synthesis from biotin. Upon exposure of the surface-bound streptavidin to biotin-functionalised polymer hybrid gold nanoparticles, then washing, a SERS signal was obtained from the 2-quinolinethiol which was attached to the gold nanoparticles (positive assay). After exposure to functionalised polymer hybrid gold nanoparticles without biotin present then washing a SERS signal was not obtained as the nanoparticles did not bind to the streptavidin (negative assay). These results illustrate the applicability of the use of SERS active functional-polymer encapsulated gold nanoparticles for bioassay application.
Resumo:
Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]?) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]? complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]? complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.
Resumo:
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.
Resumo:
The possibility of a surface inner sphere electron transfer mechanism leading to the coating of gold via the surface reduction of gold(I) chloride on metal and semi-metal oxide nanoparticles was investigated. Silica and zinc oxide nanoparticles are known to have very different surface chemistry, potentially leading to a new class of gold coated nanoparticles. Monodisperse silica nanoparticles were synthesised by the well known Stöber protocol in conjunction with sonication. The nanoparticle size was regulated solely by varying the amount of ammonia solution added. The presence of surface hydroxyl groups was investigated by liquid proton NMR. The resultant nanoparticle size was directly measured by the use of TEM. The synthesised silica nanoparticles were dispersed in acetonitrile (MeCN) and added to a bis acetonitrile gold(I) co-ordination complex [Au(MeCN)2]+ in MeCN. The silica hydroxyl groups were deprotonated in the presence of MeCN generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles, which formed a surface co-ordination complex with reduction to gold(0), that proceeded by a surface inner sphere electron transfer mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into gold(0) and gold(III) respectively, with gold(0) being added to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of gold(III) to gold(0) by ascorbic acid. This process generated a thin and uniform gold coating on the silica nanoparticles. This process was modified to include uniformly gold coated composite zinc oxide nanoparticles (Au@ZnO NPs) using surface co-ordination chemistry. AuCl dissolved in acetonitrile (MeCN) supplied chloride ions which were adsorbed onto ZnO NPs. The co-ordinated gold(I) was reduced on the ZnO surface to gold(0) by the inner sphere electron transfer mechanism. Addition of water disproportionated the remaining gold(I) to gold(0) and gold(III). Gold(0) bonded to gold(0) on the NP surface with gold(III) was reduced to gold(0) by ascorbic acid (ASC), which completed the gold coating process. This gold coating process of Au@ZnO NPs was modified to incorporate iodide instead of chloride. ZnO NPs were synthesised by the use of sodium oxide, zinc iodide and potassium iodide in refluxing basic ethanol with iodide controlling the presence of chemisorbed oxygen. These ZnO NPs were treated by the addition of gold(I) chloride dissolved in acetonitrile leaving chloride anions co-ordinated on the ZnO NP surface. This allowed acetonitrile ligands in the added [Au(MeCN)2]+ complex to surface exchange with adsorbed chloride from the dissolved AuCl on the ZnO NP surface. Gold(I) was then reduced by the surface inner sphere electron transfer mechanism. The presence of the reduced gold on the ZnO NPs allowed adsorption of iodide to generate a uniform deposition of gold onto the ZnO NP surface without the use of additional reducing agents or heat.
Resumo:
ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.