913 resultados para PROGRESSIVE SUPRANUCLEAR PALSY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The globus pallidus, together with the striatum (caudate nucleus and putamen), substantia nigra, nucleus accumbens, and subthalamic nucleus constitute the basal ganglia, a group of nuclei which act as a single functional unit. The basal ganglia have extensive connections to the cerebral cortex and thalamus and exert control over a variety of functions including voluntary motor control, procedural learning, and motivation. The action of the globus pallidus is primarily inhibitory and balances the excitatory influence of other areas of the brain such as the cerebral cortex and cerebellum. Neuropathological changes affecting the basal ganglia play a significant role in the clinical signs and symptoms observed in the ‘parkinsonian syndromes’ viz., Parkinson’s disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD). There is increasing evidence that different regions of the basal ganglia are differentially affected in these disorders. Hence, in all parkinsonian disorders and especially PD, there is significant pathology affecting the substantia nigra and its dopamine projection to the striatum. However, in PSP and MSA, the globus pallidus is also frequently affected while in DLB and CBD, whereas the caudate nucleus and/or putamen are affected, the globus pallidus is often spared. This chapter reviews the functional pathways of the basal ganglia, with special reference to the globus pallidus, and the role that differential pathology in these regions may play in the movement disorders characteristic of the parkinsonian syndromes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders could be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) were present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits were distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there was significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varied significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corticobasal degeneration is a rare, progressive neurodegenerative disorder which significantly impairs movement. The most common initial symptom is asymmetric limb clumsiness with or without accompanying rigidity or tremor. Subsequently, the disease progresses to affect gait and there is a slow progression to influence ipsilateral arms and legs. Apraxia and dementia are the most common cortical signs. Clinical diagnosis of the disorder is difficult as the symptoms resemble those of related neurodegenerative disorders. Histopathologically, there is widespread neuronal and glial pathology including tau-immunoreactive neuronal cytoplasmic inclusions, neuropil threads, oligodendroglial inclusions, astrocytic plaques, together with abnormally enlarged ‘ballooned’ neurons. Corticobasal degeneration has affinities both with the parkinsonian syndromes including Parkinson’s disease, progressive supranuclear palsy, and multiple system atrophy and with the fronto-temporal dementias. Treatment of corticobasal degeneration involves managing and reducing the effect of symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dementia with Lewy bodies (‘Lewy body dementia' or ‘diffuse Lewy body disease') (DLB) is the second commonest form of dementia after Alzheimer’s disease (AD). Characteristic of DLB are: (1) fluctuating cognitive ability with variations in attention and alertness, (2) recurrent visual hallucinations, and (3) motor features including akinesia, rigidity, and tremor. Various brain regions are affected in DLD including cortical and limbic regions. Histopathologically, alpha-synuclein-immunoreactive Lewy bodies (LB) are observed in the substantia nigra and in the cerebral cortex. DLB has affinities both with the parkinsonian syndromes including Parkinson’s disease (PD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and multiple system atrophy (MSA), and with AD, which can make differential diagnosis difficult. The presence of visual hallucinations may aid differential diagnosis of the parkinsononian syndromes and occipital hypometabolism may be a useful potential method of distinguishing DLB from AD. Treatment of CBD involves managing and reducing the effect of symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hippocampus (HC) and adjacent gyri are implicated in dementia in several neurodegenerative disorders. To compare HC pathology among disorders, densities of ‘signature’ pathological lesions were measured at a standard location in eight brain regions of 12 disorders. Principal components analysis of the data suggested that the disorders could be divided into three groups: (1) Alzheimer’s disease (AD), Down’s syndrome (DS), sporadic Creutzfeldt–Jakob disease, and variant Creutzfeldt–Jakob disease in which either β-amyloid (Aβ) or prion protein deposits were distributed in all sectors of the HC and adjacent gyri, with high densities being recorded in the parahippocampal gyrus and subiculum; (2) Pick’s disease, sporadic frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions, and neuronal intermediate filament inclusion disease in which relatively high densities of neuronal cytoplasmic inclusions were present in the dentate gyrus (DG) granule cells; and (3) Parkinson’s disease dementia, dementia with Lewy bodies, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy in which densities of signature lesions were relatively low. Variation in density of signature lesions in DG granule cells and CA1 were the most important sources of neuropathological variation among disorders. Hence, HC and adjacent gyri are differentially affected in dementia reflecting either variation in vulnerability of hippocampal neurons to specific molecular pathologies or in the spread of pathological proteins to the HC. Information regarding the distribution of pathology could ultimately help to explain variations in different cognitive domains, such as memory, observed in various disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligodendrocytes have multiple functions in the central nervous system including mechanical support of neurons, production of myelin sheaths, and uptake and inactivation of chemical neurotransmitters released by neurons. Consequently, oligodendrocytes could be involved in the pathology of a number of neurodegenerative diseases. Although, the molecular mechanisms involved require further elucidation, it is likely that oligodendrocyte dysfunction is important in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). In addition, abnormal protein aggregates in the form of oligodendrocyte inclusions (OI) have been observed in several other disorders, most notable in multiple system atrophy (MSA), in which the glial cytoplasmic inclusion (GCI) is the ‘signature’ pathology of the disease. OI have also been identified in argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP) (Armstrong et al 2007), and various forms of frontotemporal lobar degeneration (FTLD) (Armstrong et al 2010), although their role in the pathology of these disorders is less clear. It is likely that future research will expand the range of disorders in which oligodendrocytes play a significant role in neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degeneration of white matter fibre tracts occurs in several neurodegenerative disorders and results in various histological abnormalities including loss of axons, vacuolation, gliosis, axonal varicosities and spheroids, corpora amylacea, extracellular protein deposits, and glial inclusions (GI). This chapter describes quantitative studies that have been carried out on white matter pathology in a variety of neurodegenerative disease. First, in Alzheimer’s disease (AD), axonal loss quantified in histological sections stained with toluidine blue, occurs in several white matter fibre tracts including the optic nerve, olfactory tract, and corpus callosum. Second, in Creutzfeldt-Jakob disease (CJD), sections of cerebral cortex stained with haematoxylin and eosin (H/E) or immunolabelled with antibodies against the disease form of prion protein (PrPsc), reveal extensive vacuolation, gliosis of white matter, and deposition of PrPsc deposits. Third, GI immunolabelled with antibodies against various pathological proteins including tau, -synuclein, TDP-43, and FUS, have been recorded in white matter of a number of disorders including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and neuronal intermediate filament inclusion disease (NIFID). Axonal varicosities have also been observed in NIFID. There are two important questions regarding white matter pathology that need further investigation: (1) what is the relative importance of white and gray matter pathologies in different disorders and (2) do white matter abnormalities precede or are they the consequence of gray matter pathology?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tauopathies are a major molecular group of neurodegenerative disorders characterised by the deposition of abnormal cellular aggregates of the microtubule associated protein (MAP) tau in the form of neuronal cytoplasmic inclusions (NCI). Recent research suggests that cell to cell propagation of pathogenic tau may be involved in the neurodegeneration of these disorders. If pathogenic tau spreads along anatomical pathways it may give rise to specific spatial patterns of the NCI in brain tissue. To test this hypothesis, the spatial patterns of NCI in cerebral cortical regions were compared in tissue sections taken from five major tauopathies: (1) argyrophilic grain disease (AGD), (2) Alzheimer's disease (AD), (3) corticobasal degeneration (CBD), (4) Pick's disease (PiD), and (5) progressive supranuclear palsy (PSP). In the cerebral cortex of these disorders, NCI were frequently aggregated into clusters and the clusters were regularly distributed parallel to the pia mater. In a significant proportion of regions, the mean size of the regularly distributed clusters of NCI was in the range 400 – 800 m, measured parallel to the pia mater, approximating to the dimension of cell columns associated with the cortico-cortical anatomical pathways. Hence, the data suggest that cortical NCI in the tauopathies exhibit a spatial pattern in the cortex which could result from the spread of pathogenic tau along anatomical pathways. Treatments designed to protect the cortex from tau propagation may therefore be applicable across several different disorders within this molecular group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corticobasal degeneration is a rare, progressive neurodegenerative disease and a member of the 'parkinsonian' group of disorders, which also includes Parkinson's disease, progressive supranuclear palsy, dementia with Lewy bodies and multiple system atrophy. The most common initial symptom is limb clumsiness, usually affecting one side of the body, with or without accompanying rigidity or tremor. Subsequently, the disease affects gait and there is a slow progression to influence ipsilateral arms and legs. Apraxia and dementia are the most common cortical signs. Corticobasal degeneration can be difficult to distinguish from other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid clinical diagnosis. Typical ocular features include increased latency of saccadic eye movements ipsilateral to the side exhibiting apraxia, impaired smooth pursuit movements and visuo-spatial dysfunction, especially involving spatial rather than object-based tasks. Less typical features include reduction in saccadic velocity, vertical gaze palsy, visual hallucinations, sleep disturbance and an impaired electroretinogram. Aspects of primary vision such as visual acuity and colour vision are usually unaffected. Management of the condition to deal with problems of walking, movement, daily tasks and speech problems is an important aspect of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Left recurrent laryngeal nerve palsy usually results from invasion or compression of the nerve caused by diseases localized within the aortopulmonary window. This study reports the case of a 76-yr-old male with vocal cord paralysis due to lymph node involvement by silicosis. This rare entity was identified by video-mediastinoscopy, which revealed a granulomatous and fibrosed recurrent lymph node encasing the nerve. The nerve was dissected and released from scar tissues. Progressive clinical improvement was observed followed by total and durable recovery of the voice after 15 weeks follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain.A child with cerebral palsy may have impairments in motor control, which contributes to loss of functional abilities in posture and mobility. The severity of the impairment on the neuromuscular system determines the variations of functional mobility in children with cerebral palsy. The control of the patient, during the dental treatment, is of fundamental importance because these patients present some pathological reflexes which interfere in the odontological assistance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Niemann-Pick disease type C (NP-C) is a rare, progressive, irreversible disease leading to disabling neurological manifestations and premature death. The estimated disease incidence is 1:120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. NP-C is characterised by visceral, neurological and psychiatric manifestations that are not specific to the disease and that can be found in other conditions. The aim of this review is to provide non-specialists with an expert-based, detailed description of NP-C signs and symptoms, including how they present in patients and how they can be assessed. Early disease detection should rely on seeking a combination of signs and symptoms, rather than isolated findings. Examples of combinations which are strongly suggestive of NP-C include: splenomegaly and vertical supranuclear gaze palsy (VSGP); splenomegaly and clumsiness; splenomegaly and schizophrenia-like psychosis; psychotic symptoms and cognitive decline; and ataxia with dystonia, dysarthria/dysphagia and cognitive decline. VSGP is a hallmark of NP-C and becomes highly specific of the disease when it occurs in combination with other manifestations (e.g. splenomegaly, ataxia). In young infants (<2 years), abnormal saccades may first manifest as slowing and shortening of upward saccades, long before gaze palsy onset. While visceral manifestations tend to predominate during the perinatal and infantile period (2 months–6 years of age), neurological and psychiatric involvement is more prominent during the juvenile/adult period (>6 years of age). Psychosis in NP-C is atypical and variably responsive to treatment. Progressive cognitive decline, which always occurs in patients with NP-C, manifests as memory and executive impairment in juvenile/adult patients. Disease prognosis mainly correlates with the age at onset of the neurological signs, with early-onset forms progressing faster. Therefore, a detailed and descriptive picture of NP-C signs and symptoms may help improve disease detection and early diagnosis, so that therapy with miglustat (Zavesca®), the only available treatment approved to date, can be started as soon as neurological symptoms appear, in order to slow disease progression.