907 resultados para PROGRAMMES OF ACTION
Resumo:
Language processing is an example of implicit learning of multiple statistical cues that provide probabilistic information regarding word structure and use. Much of the current debate about language embodiment is devoted to how action words are represented in the brain, with motor cortex activity evoked by these words assumed to selectively reflect conceptual content and/or its simulation. We investigated whether motor cortex activity evoked by manual action words (e.g., caress) might reflect sensitivity to probabilistic orthographic-phonological cues to grammatical category embedded within individual words. We first review neuroimaging data demonstrating that nonwords evoke activity much more reliably than action words along the entire motor strip, encompassing regions proposed to be action category specific. Using fMRI, we found that disyllabic words denoting manual actions evoked increased motor cortex activity compared with non-body-part-related words (e.g., canyon), activity which overlaps that evoked by observing and executing hand movements. This result is typically interpreted in support of language embodiment. Crucially, we also found that disyllabic nonwords containing endings with probabilistic cues predictive of verb status (e.g., -eve) evoked increased activity compared with nonwords with endings predictive of noun status (e.g., -age) in the identical motor area. Thus, motor cortex responses to action words cannot be assumed to selectively reflect conceptual content and/or its simulation. Our results clearly demonstrate motor cortex activity reflects implicit processing of ortho-phonological statistical regularities that help to distinguish a word's grammatical class.
Resumo:
Acute heart failure syndrome represents a prominent and growing health problem all around the world. Ideally, medical treatment for patients admitted to hospital because of this syndrome, in addition to alleviating the acute symptoms, should also prevent myocardial damage, modulate neurohumoral and inflammatory activation, and preserve or even improve renal function. Levosimendan is a cardiac enhancer having both inotropic and vasodilatory effects. It is approved for the short-term treatment of acutely decompensated chronic heart failure, but it has been shown to have beneficial clinical effects also in ischemic heart disease and septic shock as well as in perioperative cardiac support. In the present study, the mechanisms of action of levosimendan were studied in isolated guinea-pig heart preparations: Langendorff-perfused heart, papillary muscle and permeabilized cardiomyocytes as well as in purified phosphodiesterase isoenzyme preparations. Levosimendan was shown to be a potent inotropic agent in isolated Langendorff-perfused heart and right ventricle papillary muscle. In permeabilized cardiomyocytes, it was demonstrated to be a potent calcium sensitizer in contrast to its enantiomer, dextrosimendan. It was additionally shown to be a very selective phosphodiesterase (PDE) type-3 inhibitor, the selectivity factor for PDE3 over PDE4 being 10000 for levosimendan. Irrespective of this very selective PDE3 inhibitory property in purified enzyme preparations, the inotropic effect of levosimendan was demonstrated to be mediated mainly through calcium sensitization in the isolated heart as well as the papillary muscle preparations at clinically relevant concentrations. In the isolated Lagendorff-perfused heart, glibenclamide antagonized the levosimendan-induced increase in coronary flow (CF). Therefore, the main vasodilatory mechanism in coronary veins is believed to be the opening of the ATP-sensitive potassium (KATP) channels. In the paced hearts, CF did not increase in parallel with oxygen consumption (MVO2), thus indicating that levosimendan had a direct vasodilatory effect on coronary veins. The pharmacology of levosimendan was clearly different from that of milrinone, which induced an increase in CF in parallel with MVO2. In conclusion, levosimendan was demonstrated to increase cardiac contractility by binding to cardiac troponin C and sensitizing the myofilament contractile proteins to calcium, and further to induce coronary vasodilatation by opening KATP channels in vascular smooth muscle. In addition, the efficiency of the cardiac contraction was shown to be more advantageous when the heart was perfused with levosimendan in comparison to milrinone perfusion.
Resumo:
Strategies that confine antibacterial and/or antifouling property to the surface of the implant, by modifying the surface chemistry and morphology or by encapsulating the material in an antibiotic-loaded coating, are most promising as they do not alter bulk integrity of the material. Among them, plasma-assisted modification and catechol chemistry stand out for their ability to modify a wide range of substrates. By controlling processing parameters, plasma environment can be used for surface nano structuring, chemical activation, and deposition of biologically active and passive coatings. Catechol chemistry can be used for material-independent, highly-controlled surface immobilisation of active molecules and fabrication of biodegradable drug-loaded hydrogel coatings. In this article, we comprehensively review the role plasma-assisted processing and catechol chemistry can play in combating bacterial colonisation on medically relevant coatings, and how these strategies can be coupled with the use of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial surfaces.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The binding of chromomycin A3, an antitumour antibiotic, to various DNA and chromatin isolated from mouse and rat liver, mouse fibrosarcoma and Yoshida ascites sarcoma cells was studied spectrophotometrically at 29°C in 10−2 M Tris-HCl buffer, pH 8.0, containing small amounts of MgCl2 (4.5 · 10−5−25 · 10−5 M). An isobestic point at 415 nm was observed when chromomycin A3 was gradually titrated with Image and its spectrum shifted towards higher wavelength. The rates and extent of these spectral changes were found to be dependent on the concentration of Mg2+. The change in absorbance at 440 nm was used to calculate apparent binding constant (Ka p M−1) and sites per nucleotide (n) from Scatchard plots for various DNA and chromatins. As expected, values of n for chromatin (0.06–0.10) were found to be lower than that found for corresponding DNA (0.10–0.15). Apparently no such correlation exists between binding constants (Ka p M−1 · 10−4) of DNA (6.4–11.2) and of chromatin (3.1–8.3), but Ka p M−1 of chromatin isolated from mouse fibrosarcoma and Yoshida ascites sarcoma are 1.5–3 times higher than that found for mouse and rat liver chromatin. These differences may be taken to indicate structural difference in nucleoprotein complexes caused by neoplasia. The relevance of this finding to tumour suppressive action of chromomycin A3 is discussed.
Resumo:
Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.
Resumo:
A purified antitumor protein from the proteinaceous crystal of Bacillus thuringiensis subsp. thuringiensis inhibits the growth of Yoshida ascites sarcoma both in vivo and in vitro. Exogenous respiration of the tumor cells was unaffected by the protein at a concentration as high as 500 µg/ml. The antitumor protein inhibits the uptake and incorporation of labeled precursors into macromolecules. However, the ratio of incorporation over uptake is not affected by the protein. Further, the protein brings about the leakage of 260-nm-absorbing material, proteins, and 32P-labeled cellular constituents from the Yoshida ascites sarcoma cells. The results show that the action of the antitumor protein appears to alter the cellular permeability of the tumor cells.
Resumo:
δ-Aminolevulinate (ALA) dehydratase, the second and rate limiting enzyme of the heme biosynthetic pathway in the mold Neurospora crassa is induced maximally in 30 min by the addition of iron to iron-deficient cultures. The induction of the enzyme is blocked by cycloheximide, protoporphyrin, 8-azaguanine and cordycepin. Iron also brings about an increase in poly(A)-containing RNA synthesis under conditions of induction. The iron dependent increase in poly(A)-containing RNA synthesis is blocked by protoporphyrin. It is suggested that at the time intervals examined, bulk of the messenger RNA synthesized in response to iron addition represents the messenger for ALA dehydratase.
Resumo:
The effect of selenious acid as an addition agent in the electrodeposition of manganese was studied by analysing the current-potential curves for manganese deposition. The mechanism of action of this addition agent was found to be essentially similar to that proposed for sulphur dioxide, namely to affect the manganese deposition indirectly by influencing the hydrogen evolution reaction which is a parallel reaction at the electrode surface.
Resumo:
Wound healing is a complex process that requires an interplay between several cell types. Classically, fibroblasts have been viewed as producers of extracellular matrix, but more recently they have been recognized as orchestrators of the healing response, promoting and directing, inflammation and neovascularization processes. Compared to those from healthy tissue, inflammation-associated fibroblasts display a dramatically altered phenotype and have been described as sentinel cells, able to switch to an immunoregulatory profile on cue. However, the activation mechanism still remains largely uncharacterized. Nemosis is a model for stromal fibroblast activation. When normal human primary fibroblasts are deprived of growth support they cluster, forming multicellular spheroids. Clustering results in upregulation of proinflammatory markers such as cyclooxygenase-2 and secretion of prostaglandins, proteinases, cytokines, and growth factors. Fibroblasts in nemosis induce wound healing and tumorigenic responses in many cell types found in inflammatory and tumor microenvironments. This study investigated the effect of nemotic fibroblasts on two components of the vascular system, leukocytes and endothelium, and characterized the inflammation-promoting responses that arose in these cell types. Fibroblasts in nemosis were found to secrete an array of chemotactic cytokines and attract leukocytes, as well as promote their adhesion to the endothelium. Nuclear factor-kB, the master regulator of many inflammatory responses, is activated in nemotic fibroblasts. Nemotic fibroblasts are known to produce large amounts of hepatocyte growth factor, a motogenic and angiogenic factor. Also, as shown in this study, they produce vascular endothelial growth factor. These two factors induced migratory and sprouting responses in endothelial cells, both required for neovascularization. Nemotic fibroblasts also caused a decrease in the expression of adherens and tight junction components on the surface of endothelial cells. The results allow the conclusion that fibroblasts in nemosis share many similarities with inflammation-associated fibroblasts. Both inflammation and stromal fibroblasts are known to be involved in tumorigenesis and tumor progression. Nemosis may be viewed as a model for stromal fibroblast activation, or it may correlate with cell-cell interactions between adjacent fibroblasts in vivo. Nevertheless, due to nemosis-derived production of proinflammatory cytokines and growth factors, fibroblast nemosis may have therapeutic potential as an inducer of controlled tissue repair. Knowledge of stromal fibroblast activation gained through studies of nemosis, could provide new strategies to control unwanted inflammation and tumor progression.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.