935 resultados para PRINCIPAL COMPONENTS-ANALYSIS
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.
Resumo:
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.
Resumo:
In human Population Genetics, routine applications of principal component techniques are oftenrequired. Population biologists make widespread use of certain discrete classifications of humansamples into haplotypes, the monophyletic units of phylogenetic trees constructed from severalsingle nucleotide bimorphisms hierarchically ordered. Compositional frequencies of the haplotypesare recorded within the different samples. Principal component techniques are then required as adimension-reducing strategy to bring the dimension of the problem to a manageable level, say two,to allow for graphical analysis.Population biologists at large are not aware of the special features of compositional data and normally make use of the crude covariance of compositional relative frequencies to construct principalcomponents. In this short note we present our experience with using traditional linear principalcomponents or compositional principal components based on logratios, with reference to a specificdataset
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
A new drift compensation method based on Common Principal Component Analysis (CPCA) is proposed. The drift variance in data is found as the principal components computed by CPCA. This method finds components that are common for all gasses in feature space. The method is compared in classification task with respect to the other approaches published where the drift direction is estimated through a Principal Component Analysis (PCA) of a reference gas. The proposed new method ¿ employing no specific reference gas, but information from all gases ¿has shown the same performance as the traditional approach with the best-fitted reference gas. Results are shown with data lasting 7-months including three gases at different concentrations for an array of 17 polymeric sensors.
Resumo:
In human Population Genetics, routine applications of principal component techniques are often required. Population biologists make widespread use of certain discrete classifications of human samples into haplotypes, the monophyletic units of phylogenetic trees constructed from several single nucleotide bimorphisms hierarchically ordered. Compositional frequencies of the haplotypes are recorded within the different samples. Principal component techniques are then required as a dimension-reducing strategy to bring the dimension of the problem to a manageable level, say two, to allow for graphical analysis. Population biologists at large are not aware of the special features of compositional data and normally make use of the crude covariance of compositional relative frequencies to construct principal components. In this short note we present our experience with using traditional linear principal components or compositional principal components based on logratios, with reference to a specific dataset
Resumo:
Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.
Resumo:
Phenotypic data from female Canchim beef cattle were used to obtain estimates of genetic parameters for reproduction and growth traits using a linear animal mixed model. In addition, relationships among animal estimated breeding values (EBVs) for these traits were explored using principal component analysis. The traits studied in female Canchim cattle were age at first calving (AFC), age at second calving (ASC), calving interval (CI), and bodyweight at 420 days of age (BW420). The heritability estimates for AFC, ASC, CI and BW420 were 0.03±0.01, 0.07±0.01, 0.06±0.02, and 0.24±0.02, respectively. The genetic correlations for AFC with ASC, AFC with CI, AFC with BW420, ASC with CI, ASC with BW420, and CI with BW420 were 0.87±0.07, 0.23±0.02, -0.15±0.01, 0.67±0.13, -0.07±0.13, and 0.02±0.14, respectively. Standardised EBVs for AFC, ASC and CI exhibited a high association with the first principal component, whereas the standardised EBV for BW420 was closely associated with the second principal component. The heritability estimates for AFC, ASC and CI suggest that these traits would respond slowly to selection. However, selection response could be enhanced by constructing selection indices based on the principal components. © CSIRO 2013.
Resumo:
This paper presents a novel time domain approach for Structural Health Monitoring (SHM) systems based on Electromechanical Impedance (EMI) principle and Principal Component Coefficients (PCC), also known as loadings. Differently of typical applications of EMI applied to SHM, which are based on computing the Frequency Response Function (FRF), in this work the procedure is based on the EMI principle but all analysis is conducted directly in time-domain. For this, the PCC are computed from the time response of PZT (Lead Zirconate Titanate) transducers bonded to the monitored structure, which act as actuator and sensor at the same time. The procedure is carried out exciting the PZT transducers using a wide band chirp signal and getting their time responses. The PCC are obtained in both healthy and damaged conditions and used to compute statistics indexes. Tests were carried out on an aircraft aluminum plate and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for SHM applications. Finally, the results using EMI signals in both frequency and time responses are obtained and compared. © The Society for Experimental Mechanics 2014.
Resumo:
Objective: Raman spectroscopy has been employed to discriminate between malignant (basal cell carcinoma [BCC] and melanoma [MEL]) and normal (N) skin tissues in vitro, aimed at developing a method for cancer diagnosis. Background data: Raman spectroscopy is an analytical tool that could be used to diagnose skin cancer rapidly and noninvasively. Methods: Skin biopsy fragments of similar to 2 mm(2) from excisional surgeries were scanned through a Raman spectrometer (830 nm excitation wavelength, 50 to 200 mW of power, and 20 sec exposure time) coupled to a fiber optic Raman probe. Principal component analysis (PCA) and Euclidean distance were employed to develop a discrimination model to classify samples according to histopathology. In this model, we used a set of 145 spectra from N (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues. Results: We demonstrated that principal components (PCs) 1 to 4 accounted for 95.4% of all spectral variation. These PCs have been spectrally correlated to the biochemicals present in tissues, such as proteins, lipids, and melanin. The scores of PC2 and PC3 revealed statistically significant differences among N, BCC, and MEL (ANOVA, p < 0.05) and were used in the discrimination model. A total of 28 out of 30 spectra were correctly diagnosed as N, 93 out of 96 as BCC, and 13 out of 19 as MEL, with an overall accuracy of 92.4%. Conclusions: This discrimination model based on PCA and Euclidean distance could differentiate N from malignant (BCC and MEL) with high sensitivity and specificity.
Resumo:
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits.
Resumo:
The study describes brain areas involved in medial temporal lobe (mTL) seizures of 12 patients. All patients showed so-called oro-alimentary behavior within the first 20 s of clinical seizure manifestation characteristic of mTL seizures. Single photon emission computed tomography (SPECT) images of regional cerebral blood flow (rCBF) were acquired from the patients in ictal and interictal phases and from normal volunteers. Image analysis employed categorical comparisons with statistical parametric mapping and principal component analysis (PCA) to assess functional connectivity. PCA supplemented the findings of the categorical analysis by decomposing the covariance matrix containing images of patients and healthy subjects into distinct component images of independent variance, including areas not identified by the categorical analysis. Two principal components (PCs) discriminated the subject groups: patients with right or left mTL seizures and normal volunteers, indicating distinct neuronal networks implicated by the seizure. Both PCs were correlated with seizure duration, one positively and the other negatively, confirming their physiological significance. The independence of the two PCs yielded a clear clustering of subject groups. The local pattern within the temporal lobe describes critical relay nodes which are the counterpart of oro-alimentary behavior: (1) right mesial temporal zone and ipsilateral anterior insula in right mTL seizures, and (2) temporal poles on both sides that are densely interconnected by the anterior commissure. Regions remote from the temporal lobe may be related to seizure propagation and include positively and negatively loaded areas. These patterns, the covarying areas of the temporal pole and occipito-basal visual association cortices, for example, are related to known anatomic paths.
Resumo:
Statistical shape analysis techniques commonly employed in the medical imaging community, such as active shape models or active appearance models, rely on principal component analysis (PCA) to decompose shape variability into a reduced set of interpretable components. In this paper we propose principal factor analysis (PFA) as an alternative and complementary tool to PCA providing a decomposition into modes of variation that can be more easily interpretable, while still being a linear efficient technique that performs dimensionality reduction (as opposed to independent component analysis, ICA). The key difference between PFA and PCA is that PFA models covariance between variables, rather than the total variance in the data. The added value of PFA is illustrated on 2D landmark data of corpora callosa outlines. Then, a study of the 3D shape variability of the human left femur is performed. Finally, we report results on vector-valued 3D deformation fields resulting from non-rigid registration of ventricles in MRI of the brain.