974 resultados para PREY INTERACTIONS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator-prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator-prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator-prey networks ( two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator-prey networks.
Resumo:
Landscape structure and heterogeneity play a potentially important, but little understood role in predator-prey interactions and behaviourally-mediated habitat selection. For example, habitat complexity may either reduce or enhance the efficiency of a predator's efforts to search, track, capture, kill and consume prey. For prey, structural heterogeneity may affect predator detection, avoidance and defense, escape tactics, and the ability to exploit refuges. This study, investigates whether and how vegetation and topographic structure influence the spatial patterns and distribution of moose (Alces alces) mortality due to predation and malnutrition at the local and landscape levels on Isle Royale National Park. 230 locations where wolves (Canis lupus) killed moose during the winters between 2002 and 2010, and 182 moose starvation death sites for the period 1996-2010, were selected from the extensive Isle Royale Wolf-Moose Project carcass database. A variety of LiDAR-derived metrics were generated and used in an algorithm model (Random Forest) to identify, characterize, and classify three-dimensional variables significant to each of the mortality classes. Furthermore, spatial models to predict and assess the likelihood at the landscape scale of moose mortality were developed. This research found that the patterns of moose mortality by predation and malnutrition across the landscape are non-random, have a high degree of spatial variability, and that both mechanisms operate in contexts of comparable physiographic and vegetation structure. Wolf winter hunting locations on Isle Royale are more likely to be a result of its prey habitat selection, although they seem to prioritize the overall areas with higher moose density in the winter. Furthermore, the findings suggest that the distribution of moose mortality by predation is habitat-specific to moose, and not to wolves. In addition, moose sex, age, and health condition also affect mortality site selection, as revealed by subtle differences between sites in vegetation heights, vegetation density, and topography. Vegetation density in particular appears to differentiate mortality locations for distinct classes of moose. The results also emphasize the significance of fine-scale landscape and habitat features when addressing predator-prey interactions. These finer scale findings would be easily missed if analyses were limited to the broader landscape scale alone.
Resumo:
The strength of top-down indirect effects of carnivores on plants (trophic cascades) varies greatly and may depend on the identity of the intermediate (herbivore) species. If the effect strength is linked to functional traits of the herbivores then this would allow for more general predictions. Due to the generally sub-lethal effects of herbivory in terrestrial systems, trophic cascades manifest themselves in the first instance in the fitness of individual plants, affecting both their numerical and genetic contributions to the population. We directly compare the indirect predator effects on growth and reproductive output of individual Vicia faba plants mediated by the presence of two aphid species: Acyrtosiphon pisum is characterised by a boom and bust strategy whereby colonies grow fast and overexploit their host plant individual while Megoura viciae appear to follow a more prudent strategy that avoids over-exploitation and death of the host plant.Plants in the field were infested with A. pisum, M. viciae or both and half the plants were protected from predators. Exposure to predators had a strong impact on the biomass of individual plants and the strength of this effect differed significantly between the different herbivore treatments.A. pisum had a greater direct impact on plants and this was coupled with a significantly stronger indirect predator effect on plant biomass.Although the direct impact of predators was strongest on M. viciae, this was not transmitted to the plant level, indicating that the predator-prey interactions strength is not as important as the plant-herbivore link for the magnitude of the indirect predator impact. At the individual plant level, the indirect predator effect was purely due to consumptive effects on herbivore densities with no evidence for increased herbivore dispersal in response to presence of predators. The nature of plant-herbivore interactions is the key to terrestrial trophic cascade strength. The two herbivores that we compared were similar in feeding mode and body size but differed their way how they exploit host plants, which was the important trait explaining the strength of the trophic cascade.
Resumo:
This is the seventeenth of a series of symposia devoted to talks by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, and sixteenth were at Kansas State University, the second and fourth were at the University of Nebraska-Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh, tenth, thirteenth, and seventeenth were at Iowa State University, the eighth and fourteenth were at the University of Missouri–Columbia, and the eleventh and fifteenth were at Colorado State University. Next year's symposium will be at the University of Colorado. Symposium proceedings are edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover work in progress. ContentsThe Effect of Polymer Dosage Conditions on the Properties of ProteinPolyelectrolyte Precipitates, K. H. Clark and C. E. Glatz, Iowa State University An Immobilized Enzyme Reactor/Separator for the Hydrolysis of Casein by Subtilisin Carlsberg, A. J. Bream, R. A. Yoshisato, and G. R. Carmichael, University of Iowa Cell Density Measurements in Hollow Fiber Bioreactors, Thomas Blute, Colorado State University The Hydrodynamics in an Air-Lift Reactor, Peter Sohn, George Y. Preckshot, and Rakesh K. Bajpai, University of Missouri–Columbia Local Liquid Velocity Measurements in a Split Cylinder Airlift Column, G. Travis Jones, Kansas State University Fluidized Bed Solid Substrate Trichoderma reesei Fermentation, S. Adisasmito, H. N. Karim, and R. P. Tengerdy, Colorado State University The Effect of 2,4-D Concentration on the Growth of Streptanthus tortuosis Cells in Shake Flask and Air-Lift Permenter Culture, I. C. Kong, R. D. Sjolund, and R. A. Yoshisato, University of Iowa Protein Engineering of Aspergillus niger Glucoamylase, Michael R. Sierks, Iowa State University Structured Kinetic Modeling of Hybidoma Growth and Monoclonal Antibody Production in Suspension Cultures, Brian C. Batt and Dhinakar S. Kampala, University of Colorado Modelling and Control of a Zymomonas mobilis Fermentation, John F. Kramer, M. N. Karim, and J. Linden, Colorado State University Modeling of Brettanomyces clausenii Fermentation on Mixtures of Glucose and Cellobiose, Max T. Bynum and Dhinakar S. Kampala, University of Colorado, Karel Grohmann and Charles E. Yyman, Solar Energy Research Institute Master Equation Modeling and Monte Carlo Simulation of Predator-Prey Interactions, R. 0. Fox, Y. Y. Huang, and L. T. Fan, Kansas State University Kinetics and Equilibria of Condensation Reactions Between Two Different Monosaccharides Catalyzed by Aspergillus niger Glucoamylase, Sabine Pestlin, Iowa State University Biodegradation of Metalworking Fluids, S. M. Lee, Ayush Gupta, L. E. Erickson, and L. T. Fan, Kansas State University Redox Potential, Toxicity and Oscillations in Solvent Fermentations, Kim Joong, Rakesh Bajpai, and Eugene L. Iannotti, University of Missouri–Columbia Using Structured Kinetic Models for Analyzing Instability in Recombinant Bacterial Cultures, William E. Bentley and Dhinakar S. Kompala, University of Colorado
Resumo:
Characterization of the diets of upper-trophic predators is a key ingredient in management including the development of ecosystem-based fishery management plans, conservation efforts for top predators, and ecological and economic modeling of predator prey interactions. The California Current Predator Diet Database (CCPDD) synthesizes data from published records of predator food habits over the past century. The database includes diet information for 100+ upper-trophic level predator species, based on over 200 published citations from the California Current region of the Pacific Ocean, ranging from Baja, Mexico to Vancouver Island, Canada. We include diet data for all predators that consume forage species: seabirds, cetaceans, pinnipeds, bony and cartilaginous fishes, and a predatory invertebrate; data represent seven discrete geographic regions within the CCS (Canada, WA, OR, CA-n, CA-c, CA-s, Mexico). The database is organized around predator-prey links that represent an occurrence of a predator eating a prey or group of prey items. Here we present synthesized data for the occurrence of 32 forage species (see Table 2 in the affiliated paper) in the diet of pelagic predators (currently submitted to Ecological Informatics). Future versions of the shared-data will include diet information for all prey items consumed, not just the forage species of interest.
Resumo:
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3-5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.
Resumo:
We tested the effect of near-future CO2 levels (= 490, 570, 700, and 960 µatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 µatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 µatm CO2 (control). In contrast, juveniles reared at 700 and 960 µatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 µatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 µatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
Irregularities in observed population densities have traditionally been attributed to discretization of the underlying dynamics. We propose an alternative explanation by demonstrating the evolution of spatiotemporal chaos in reaction-diffusion models for predator-prey interactions. The chaos is generated naturally in the wake of invasive waves of predators. We discuss in detail the mechanism by which the chaos is generated. By considering a mathematical caricature of the predator-prey models, we go on to explain the dynamical origin of the irregular behavior and to justify our assertion that the behavior we present is a genuine example of spatiotemporal chaos.
Resumo:
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.