45 resultados para PRESSURIZATION
Resumo:
We performed the initial assessment of an alternative pressurized intraventilated (PIV) caging system for laboratory mice that uses direct-current microfans to achieve cage pressurization and ventilation. Twenty-nine pairs of female SPF BALB/c mice were used, with 19 experimental pairs kept in Ply cages and 10 control pairs kept in regular filter-top (FT) cages. Both groups were housed in a standard housing room with a conventional atmospheric control system. For both systems, intracage temperatures were in equilibrium with ambient room temperature. PIV cages showed a significant difference in pressure between days 1 and 8. Air speed (and consequently airflow rate) and the number of air changes hourly in the PIV cages showed decreasing trends. In both systems, ammonia concentrations increased with time, with significant differences between groups starting on day 1. Overall, the data revealed that intracage pressurization and ventilation by using microfans is a simple, reliable system, with low cost, maintenance requirements, and incidence of failures. Further experiments are needed to determine the potential influence of this system on the reproductive performance and pulmonary integrity in mice.
Resumo:
Adhesive bonding provides solutions to realize cost effective and low weight aircraft fuselage structures, in particular where the Damage Tolerance (DT) is the design criterion. Bonded structures that combine Metal Laminates (MLs) and eventually Selective Reinforcements can guarantee slow crack propagation, crack arrest and large damage capability. To optimize the design exploiting the benefit of bonded structures incorporating selective reinforcement requires reliable analysis tools. The effect of bonded doublers / selective reinforcements is very difficult to be predicted numerically or analytically due to the complexity of the underlying mechanisms and failures modes acting. Reliable predictions of crack growth and residual strength can only be based on sound empirical and phenomenological considerations strictly related to the specific structural concept. Large flat stiffened panels that combine MLs and selective reinforcements have been tested with the purpose of investigating solutions applicable to pressurized fuselages. The large test campaign (for a total of 35 stiffened panels) has quantitatively investigated the role of the different metallic skin concepts (monolithic vs. MLs) of the aluminum, titanium and glass-fiber reinforcements, of the stringers material and cross sections and of the geometry and location of doublers / selective reinforcements. Bonded doublers and selective reinforcements confirmed to be outstanding tools to improve the DT properties of structural elements with a minor weight increase. However the choice of proper materials for the skin and the stringers must be not underestimated since they play an important role as well. A fuselage structural concept has been developed to exploit the benefit of a metal laminate design concept in terms of high Fatigue and Damage Tolerance (F&DT) performances. The structure used laminated skin (0.8mm thick), bonded stringers, two different splicing solutions and selective reinforcements (glass prepreg embedded in the laminate) under the circumferential frames. To validate the design concept a curved panel was manufactured and tested under loading conditions representative of a single aisle fuselage: cyclic internal pressurization plus longitudinal loads. The geometry of the panel, design and loading conditions were tailored for the requirements of the upper front fuselage. The curved panel has been fatigue tested for 60 000 cycles before the introduction of artificial damages (cracks in longitudinal and circumferential directions). The crack growth of the artificial damages has been investigated for about 85 000 cycles. At the end a residual strength test has been performed with a “2 bay over broken frame” longitudinal crack. The reparability of this innovative concept has been taken into account during design and demonstrated with the use of an external riveted repair. The F&DT curved panel test has confirmed that a long fatigue life and high damage tolerance can be achieved with a hybrid metal laminate low weight configuration. The superior fatigue life from metal laminates and the high damage tolerance characteristics provided by integrated selective reinforcements are the key concepts that provided the excellent performances. The weight comparison between the innovative bonded concept and a conventional monolithic riveted design solution showed a significant potential weight saving but the weight advantages shall be traded off with the additional costs.
Resumo:
Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005 – 2009. A pattern of eruptive activity was observed during 2005 – 2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10 – 30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: 1) an initial inflation due to pressurization, followed by 2) a rapid deflation as overpressure is explosively release, and finally 3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially crystallized plug of magma. The energy released during the strong explosions has allowed for imaging of Fuego’s shallow conduit, which appears to have migrated west of the summit crater. In summary, Fuego is becoming more gas charged and its summit centered vent is shifting to the west - serious hazard consequences are likely.
Resumo:
Endovascular aortic repair (EVAR) necessitates lifelong surveillance for the patient, in order to detect complications timely. Endoleaks (ELs) are among the most common complications of EVAR. Especially type II ELs can have a very unpredictable clinical course and this can range from spontaneous sealing to aortic rupture. Subgroups of this type of EL need to be identified in order to make a proper risk stratification. Aim of this review is to describe the existing imaging techniques, including their advantages and disadvantages in the context of post-EVAR surveillance with a particular emphasis on low-flow ELs. Low flow ELs cause pressurization of the aortic aneurysm sac with a low velocity filling, leading to difficulty of detection by routine imaging protocols for EVAR surveillance, e.g. bi- or triphasic multislice computed tomographic angiography, magnetic resonance imaging and contrast enhanced ultrasound. In this article, we review the imaging possibilities of ELs and discuss the different imaging strategies available for depicting low flow ELs.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
An important issue related to future nuclear fusion reactors fueled with deuterium and tritium is the creation of large amounts of dust due to several mechanisms (disruptions, ELMs and VDEs). The dust size expected in nuclear fusion experiments (such as ITER) is in the order of microns (between 0.1 and 1000 μm). Almost the total amount of this dust remains in the vacuum vessel (VV). This radiological dust can re-suspend in case of LOVA (loss of vacuum accident) and these phenomena can cause explosions and serious damages to the health of the operators and to the integrity of the device. The authors have developed a facility, STARDUST, in order to reproduce the thermo fluid-dynamic conditions comparable to those expected inside the VV of the next generation of experiments such as ITER in case of LOVA. The dust used inside the STARDUST facility presents particle sizes and physical characteristics comparable with those that created inside the VV of nuclear fusion experiments. In this facility an experimental campaign has been conducted with the purpose of tracking the dust re-suspended at low pressurization rates (comparable to those expected in case of LOVA in ITER and suggested by the General Safety and Security Report ITER-GSSR) using a fast camera with a frame rate from 1000 to 10,000 images per second. The velocity fields of the mobilized dust are derived from the imaging of a two-dimensional slice of the flow illuminated by optically adapted laser beam. The aim of this work is to demonstrate the possibility of dust tracking by means of image processing with the objective of determining the velocity field values of dust re-suspended during a LOVA.
Resumo:
Ensaios de distribuição de água de aspersores são convencionalmente realizados manualmente, requerendo tempo e mão de obra treinada. A automação desses ensaios proporciona redução da demanda por esses recursos e apresenta potencial para minimizar falhas e/ou desvios de procedimento. Atualmente, laboratórios de ensaio e calibração acreditados junto a organismos legais devem apresentar em seus relatórios a incerteza de medição de seus instrumentos e sistemas de medição. Além disso, normas de ensaio e calibração apresentam especificação de incerteza aceitável, como a norma de ensaios de distribuição de água por aspersores, ISO 15886-3 (2012), a qual exige uma incerteza expandida de até 3% em 80% dos coletores. Os objetivos deste trabalho foram desenvolver um sistema automatizado para os ensaios de aspersores em laboratório e realizar a análise de incerteza de medição, para sua quantificação nos resultados de ensaio e para dar suporte ao dimensionamento dos tubos de coleta. O sistema automático foi constituído por um subsistema de gerenciamento, por meio de um aplicativo supervisório, um de pressurização e um de coleta, por meio de módulos eletrônicos microprocessados desenvolvidos. De acordo com instruções do sistema de gerenciamento o sistema de pressurização ajustava a pressão no aspersor por meio do controle da rotação da motobomba, e o sistema de coleta realizava a medição da intensidade de precipitação de água ao longo do raio de alcance do aspersor. A água captada por cada coletor drenava para um tubo de coleta, que estava conectado a uma das válvulas solenoides de um conjunto, onde havia um transmissor de pressão. Cada válvula era acionada individualmente numa sequência para a medição do nível de água em cada tubo de coleta, por meio do transmissor. Por meio das análises realizadas, as menores incertezas foram obtidas para os menores diâmetros de tubo de coleta, sendo que se deve utilizar o menor diâmetro possível. Quanto ao tempo de coleta, houve redução da incerteza de medição ao se aumentar a duração, devendo haver um tempo mínimo para se atingir a incerteza-alvo. Apesar de cada intensidade requer um tempo mínimo para garantir a incerteza, a diferença mínima de nível a ser medida foi a mesma. Portanto, para os ensaios visando atender a incerteza, realizou-se o monitoramento da diferença de nível nos tubos, ou diferença de nível, facilitando a realização do ensaio. Outra condição de ensaio considerou um tempo de coleta para 30 voltas do aspersor, também exigido pela norma ISO 15886-3 (2012). A terceira condição considerou 1 h de coleta, como tradicionalmente realizado. As curvas de distribuição de água obtidas por meio do sistema desenvolvido foram semelhantes às obtidas em ensaios convencionais, para as três situações avaliadas. Para tempos de coleta de 1 h ou 30 voltas do aspersor o sistema automático requereu menos tempo total de ensaio que o ensaio convencional. Entretanto, o sistema desenvolvido demandou mais tempo para atingir a incerteza-alvo, o que é uma limitação, mesmo sendo automatizado. De qualquer forma, o sistema necessitava apenas que um técnico informasse os parâmetros de ensaio e o acionasse, possibilitando que o mesmo alocasse seu tempo em outras atividades.
Resumo:
Shock tubes have been used successfully by a number of investigators to study the biological effects of variations in environmental pressures (1,2,3). Recently an unusually versatile laboratory pressurization source became available with the capability of consistently reproducing a wide variety of pressure-time phenomena of durations equal to and well beyond those associated with the detonation of nuclear devices (4). Thus it became possible to supplement costly full-scale field research in blast biology carried out at the Nevada Test Site (5,6) by using an economical yet realistic laboratory tool. In one exploratory study employing pressure pulses of 5 to 10 sec duration wherein the times to max overpressure and the magnitudes of the overpressures were varied, a relatively high tolerance of biological media to pressures well over 150 psi was demonstrated (7). In contrast, the present paper will describe the relatively high biological susceptibility to long duration overpressures in which the pressure rises occurred in single and double fast-rising steps.
Resumo:
Understanding, and controlling, the conditions under which calcite precipitates within geothermal energy production systems is a key step in maintaining production efficiency. In this study, I apply methods of bulk and clumped isotope thermometry to an operating geothermal energy facility in northern Nevada to see how those methods can better inform the facility owner, AltaRock Energy, Inc., about the occurrence of calcite scale in their power plant. I have taken water samples from five production wells, the combined generator effluent, shallow cold-water wells, monitoring wells, and surface water. I also collected calcite scale samples from within the production system. Water samples were analyzed for stable oxygen isotope composition (d18O). Calcite samples were analyzed for stable oxygen and carbon (d13C) composition, and clumped isotope composition (D47). With two exceptions, the water compositions are very similar, likely indicating common origin and a well-mixed hydrothermal system. The calcite samples are likewise similar to one another. Apparent temperatures calculated from d18O values of water and calcite are lower than those recorded for the system. Apparent temperatures calculated from D47 are several degrees higher than the recorded well temperatures. The lower temperatures from the bulk isotope data are consistent with temperatures that could be expected during a de-pressurization of the production system, which would cause boiling in the pipes, a reduction in system temperature, and rapid precipitation of calcite scale. However, the high apparent temperature indicated by the D47 data suggests that the calcite is depleted in clumped isotopes given the known temperature of the system, which is inconsistent with this hypothesis. This depletion could instead result from disequilibrium isotopic fractionation during the aforementioned boil events, which would make both the apparent d18O-based and D47-based temperatures unrepresentative of the actual water temperature. This research can help improve our understanding of how isotopic analyses can better inform us about the movement of water through geothermal systems of the past and how it now moves through modern systems. Increased understanding of water movement in these systems could potentially allow for more efficient utilization of geothermal energy as a renewable resource.
Resumo:
This thesis concerns mixed flows (which are characterized by the simultaneous occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under bridges), and contributes to the improvement of the existing numerical tools for modelling these phenomena. The classic Preissmann slot approach is selected due to its simplicity and capability of predicting results comparable to those of a more recent and complex two-equation model, as shown here with reference to a laboratory test case. In order to enhance the computational efficiency, a local time stepping strategy is implemented in a shock-capturing Godunov-type finite volume numerical scheme for the integration of the de Saint-Venant equations. The results of different numerical tests show that local time stepping reduces run time significantly (between −29% and −85% CPU time for the test cases considered) compared to the conventional global time stepping, especially when only a small region of the flow field is surcharged, while solution accuracy and mass conservation are not impaired. The second part of this thesis is devoted to the modelling of the hydraulic effects of potentially pressurized structures, such as bridges and culverts, inserted in open channel domains. To this aim, a two-dimensional mixed flow model is developed first. The classic conservative formulation of the 2D shallow water equations for free-surface flow is adapted by assuming that two fictitious vertical slots, normally intersecting, are added on the ceiling of each integration element. Numerical results show that this schematization is suitable for the prediction of 2D flooding phenomena in which the pressurization of crossing structures can be expected. Given that the Preissmann model does not allow for the possibility of bridge overtopping, a one-dimensional model is also presented in this thesis to handle this particular condition. The flows below and above the deck are considered as parallel, and linked to the upstream and downstream reaches of the channel by introducing suitable internal boundary conditions. The comparison with experimental data and with the results of HEC-RAS simulations shows that the proposed model can be a useful and effective tool for predicting overtopping and backwater effects induced by the presence of bridges and culverts.
Resumo:
Hydrogen has been called the fuel of the future, and as it’s non- renewable counterparts become scarce the economic viability of hydrogen gains traction. The potential of hydrogen is marked by its high mass specific energy density and wide applicability as a fuel in fuel cell vehicles and homes. However hydrogen’s volume must be reduced via pressurization or liquefaction in order to make it more transportable and volume efficient. Currently the vast majority of industrially produced hydrogen comes from steam reforming of natural gas. This practice yields low-pressure gas which must then be compressed at considerable cost and uses fossil fuels as a feedstock leaving behind harmful CO and CO2 gases as a by-product. The second method used by industry to produce hydrogen gas is low pressure electrolysis. In comparison the electrolysis of water at low pressure can produce pure hydrogen and oxygen gas with no harmful by-products using only water as a feedstock, but it will still need to be compressed before use. Multiple theoretical works agree that high pressure electrolysis could reduce the energy losses due to product gas compression. However these works openly admit that their projected gains are purely theoretical and ignore the practical limitations and resistances of a real life high pressure system. The goal of this work is to experimentally confirm the proposed thermodynamic gains of ultra-high pressure electrolysis in alkaline solution and characterize the behavior of a real life high pressure system.
Resumo:
The objective of this dissertation is to explore a more accurate and versatile approach to investigating the neutralization of spores suffered from ultrafast heating and biocide based stresses, and further to explore and understand novel methods to supply ultrafast heating and biocides through nanostructured energetic materials A surface heating method was developed to apply accurate (± 25 ˚C), high heating rate thermal energy (200 - 800 ˚C, ~103 - ~105 ˚C/s). Uniform attachment of bacterial spores was achieved electrophoretically onto fine wires in liquids, which could be quantitatively detached into suspension for spore enumeration. The spore inactivation increased with temperature and heating rate, and fit a sigmoid response. The neutralization mechanisms of peak temperature and heating rate were correlated to the DNA damage at ~104 ˚C/s, and to the coat rupture by ultrafast vapor pressurization inside spores at ~105 ˚C/s. Humidity was found to have a synergistic effect of rapid heating and chlorine gas to neutralization efficiency. The primary neutralization mechanism of Cl2 and rapid heat is proposed to be chlorine reacting with the spore surface. The stress-kill correlation above provides guidance to explore new biocidal thermites, and to probe mechanisms. Results show that nano-Al/K2S2O8 released more gas at a lower temperature and generated a higher maximum pressure than the other nano-Al/oxysalts. Given that this thermite formulation generates the similar amount of SO2 as O2, it can be considered as a potential candidate for use in energetic biocidal applications. The reaction mechanisms of persulfate and other oxysalts containing thermites can be divided into two groups, with the reactive thermites (e.g. Al/K2S2O8) that generate ~10× higher of pressure and ~10× shorter of burn time ignited via a solid-gas Al/O2 reaction, while the less reactive thermites (e.g. Al/K2SO4) following a condensed phase Al/O reaction mechanism. These different ignition mechanisms were further re-evaluated by investigating the roles of free and bound oxygen. A constant critical reaction rate for ignition was found which is independent to ignition temperature, heating rate and free vs. bound oxygen.
Resumo:
Indoor environmental conditions in classrooms, in particular temperature and indoor air quality, influence students’ health, attitude and performance. In recent years, several studies regarding indoor environmental quality of classrooms were published and natural ventilation proved to have great potential, particularly in southern European climate. This research aimed to evaluate indoor environmental conditions in eight schools and to assess their improvement potential by simple natural ventilation strategies. Temperature, relative humidity and carbon dioxide concentration were measured in 32 classrooms. Ventilation performance of the classrooms was characterized using two techniques, first by fan pressurization measurements of the envelope airtightness and later by tracer gas measurements of the air change rate assuming different envelope conditions. A total of 110 tracer gas measurements were made and the results validated ventilation protocols that were tested afterward. The results of the ventilation protocol implementation were encouraging and, overall, a decrease on the CO2 concentration was observed without modifying the comfort conditions. Nevertheless, additional measurements must be performed for winter conditions.
Resumo:
In light of deep-sea mining industry development, particularly interested in massive-sulphide deposits enriched in metals with high commercial value, efforts are increasing to better understand potential environmental impacts to local fauna. The aim of this study was to assess the natural background levels of biomarkers in the hydrothermal vent shrimp Rimicaris exoculata and their responses to copper exposure at in situ pressure (30MPa) as well as the effects of depressurization and pressurization of the high-pressure aquarium IPOCAMP. R. exoculata were collected from the chimney walls of the hydrothermal vent site TAG (Mid Atlantic Ridge) at 3630m depth during the BICOSE cruise in 2014. Tissue metal accumulation was quantified in different tissues (gills, hepatopancreas and muscle) and a battery of biomarkers was measured: metal exposure (metallothioneins), oxidative stress (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase) and oxidative damage (lipid peroxidation). Data show a higher concentration of Cu in the hepatopancreas and a slight increase in the gills after incubations (for both exposed groups). Significant induction of metallothioneins was observed in the gills of shrimps exposed to 4μM of Cu compared to the control group. Moreover, activities of enzymes were detected for the in situ group, showing a background protection against metal toxicity. Results suggest that the proposed method, including a physiologically critical step of pressurizing and depressurizing the test chamber to enable the seawater exchange during exposure to contaminants, is not affecting metal accumulation and biomarkers response and may prove a useful method to assess toxicity of contaminants in deep-sea species.