976 resultados para POOL
Resumo:
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Lateral motion and departure of vapor bubbles in nucleate pool boiling on thin wires in microgravity
Resumo:
A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30mm in length is simultaneously used as heater and thermometer. Only the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. A scale analysis on the Marangoni convection surrounding a bubble in the process of subcooled nucleate pool boiling leads to formulas of the characteristic velocity of the lateral motion and its observability. The predictions consist with the experimental observations. Considering the Marangoni effect, a new qualitative model is proposed to reveal the mechanism underlying the bubble departure processes and a quantitative agreement can also be acquired.
Resumo:
Expendable bathythermograph data collected by the Ships of Opportunity (SOOP) - Ocean Monitoring Program are analyzed for seasonal and inter-annual variations of the cold pool. Two major SOOP transects within the Middle Atlantic Bight (Southern New England and New York) have been analyzed for the years common to both (1977-81). During the years 1977-81, over 200 transects were occupied, and almost 3,000 XBT's were dropped. Results show that the cold pool is formed with the onset of spring warming and persists until fall overturn, is consistent year to year in both area and weighted average annual temperature, and advects water from the northeast to the southwest. Results also show a 100-d lag in minimum temperature between the Southern New England and New York transects. DitTerences in bathymetry between the two transects and their influence on the cold pool are also discussed. Plots of average (1977-81) bottom temperature for both transects are discussed and show consistent annual weighted mean temperature and areas. Bottom temperature plots for individual years, as well as maximum and minimum bottom temperature plots, are presented as Appendix figures. (PDF file contains 28 pages.)
Resumo:
A small isolated tide pool was studied quite intensively over a period on one month. A oensus of all animals present was taken, and a population record kept daily for the month. Fluctuations in the numbers of individuals were noted, and reasons for these fluctuations sought. The behavior and feeding habits of the various animals were noted, and an attempt was made to relate the animals to their environment. This is a student paper done for a University of California Berkeley Zoology class. Since UCB didn't have its own marine lab at the time, it rented space at Hopkins Marine Station where this work was done. Gene Haderlie went on to earn his Ph.D. from Berkeley and later became a Professor at the Naval Post Graduate School in Monterey. (PDF contains 22 pages)
Resumo:
Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity.
Resumo:
A new set of experimental data of subcooled pool boiling on a thin wire in rnicrogravity aboard the 22nd Chinese recoverable satellite is reported in the present paper. The temperature-control led heating method is used. The results of the experiments in normal gravity before and after the flight experiment are also presented, and compared with those in microgravity. The working fluid is degassed R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. It is found that the heat transfer of nucleate pool boiling is slightly enhanced in microgravity comparing with those in normal gravity. It is also found that the correlation of Lienhard and Dhir can predict the CHF with good agreement, although the range of the dimensionless radius is extended by three or more decades above the originally set limit. Three critical bubble diameters are observed in microgravity, which divide the observed vapor bubbles into four regimes with different sizes. Considering the Marangoni effect, a qualitative model is proposed to reveal the mechanism underlying the bubble departure processes, and a quantitative agreement can also be acquired.
Resumo:
A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is degassed R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. Only the dynamics of the vapor bubbles, particularly the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. It's found that these distinct behaviors can be explained by the Marangoni convection in the liquid surrounding vapor bubbles. The origin of the Marangoni effect is also discussed.
Resumo:
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included groundbased tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.
Resumo:
Part I. Novel composite polyelectrolyte materials were developed that exhibit desirable charge propagation and ion-retention properties. The morphology of electrode coatings cast from these materials was shown to be more important for its electrochemical behavior than its chemical composition.
Part II. The Wilhelmy plate technique for measuring dynamic surface tension was extended to electrified liquid-liquid interphases. The dynamical response of the aqueous NaF-mercury electrified interphase was examined by concomitant measurement of surface tension, current, and applied electrostatic potential. Observations of the surface tension response to linear sweep voltammetry and to step function perturbations in the applied electrostatic potential (e.g., chronotensiometry) provided strong evidence that relaxation processes proceed for time-periods that are at least an order of magnitude longer than the time periods necessary to establish diffusion equilibrium. The dynamical response of the surface tension is analyzed within the context of non-equilibrium thermodynamics and a kinetic model that requires three simultaneous first order processes.
Resumo:
The Azraq oasis lies in the Jordanian desert, about 85 km east of Amman. In this brief paper the author summarises his observations from a visit to the oasis in 1991, discusses the effects of pumping groundwater from the oasis to Amman and presents results from a plankton survey.
Resumo:
This article provides insights into a particular aspect of freshwater research in China and its wider implications for western researchers. The senior author has collaborated with Professor Zhang Zhaohui from Guizhou Normal University to investigate the travertines of China. Travertines are freshwater carbonate deposits accumulating in hard-water springs and rivers. In some areas they develop rapidly, forming picturesque ascades and magnificent travertine-dammed lakes. Some of China's most famous tourist sites are the result of travertine formation. The travertine-depositing environment is a unique fast-flowing ecosystem inhabited by specialist plants and animals. The authors examine the freshwater algae of the Doupe Pool travertine situated on the Beishuihei River in Guizhou Province and compare their distribution on travertines elsewhere in the world.
Resumo:
La electricidad es un elemento muy importante para la sociedad y cada vez se depende más para la vida moderna y el trabajo. Como consecuencia, el consumo de electricidad ha crecido año a año y por lo tanto, la producción también ha aumentado. Esto ha provocado que los países estén interconectados entre sí para poder satisfacer la demanda de electricidad. Esta situación ha llevado a la formación del mayor mercado a nivel global de intercambio de electricidad. Este trabajo tiene como objetivo analizar el mercado eléctrico de los países de Noruega, Suecia, Finlandia y Dinamarca y el análisis de los precios de la electricidad. Los resultados sugieren que los precios de la electricidad son muy volátiles, es por ello que en invierno la media de los precios es más alta y en verano es más baja.
Resumo:
La electricidad es un elemento muy importante para la sociedad y cada vez se depende más para la vida moderna y el trabajo. Como consecuencia, el consumo de electricidad ha crecido año a año y por lo tanto, la producción también ha aumentado. Esto ha provocado que los países estén interconectados entre sí para poder satisfacer la demanda de electricidad. Esta situación ha llevado a la formación del mayor mercado a nivel global de intercambio de electricidad. Este trabajo tiene como objetivo analizar el mercado eléctrico de los países de Noruega, Suecia, Finlandia y Dinamarca y el análisis de los precios de la electricidad. Los resultados sugieren que los precios de la electricidad son muy volátiles, es por ello que en invierno la media de los precios es más alta y en verano es más baja.