920 resultados para POLYNOMIAL CHAOS
Resumo:
We demonstrate that the dynamics of an autonomous chaotic class C laser can be controlled to a periodic state via external modulation of the pump. In the absence of modulation, above the chaos threshold, the laser exhibits Lorenz-like chaotic pulsations. The average amplitude and frequency of these pulsations depend on the pump power. We find that there exist parameter windows where modulation of the pump power extinguishes the chaos in favor of simpler periodic behavior. Moreover we find a number of locking ratios between the pump and laser output follow the Farey sequence.
Resumo:
The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.
Resumo:
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K, C-0) and (K, sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K-c decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).
Resumo:
Nonlinear Dynamics, chaos, Control, and Their Applications to Engineering Sciences: Vol. 6 - Applications of nonlinear phenomena
Resumo:
[s.c.]
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism Φ of F sending W to U. This work analyzes an approach due to C. Edmunds and improved by C. Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two- generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.