963 resultados para POLYMER OPTICAL FIBER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmission loss in polymer optical fiber (POF) is much higher than that in silica fiber. Very strong absorption bands dominate throughout the visible and near infrared. Optical absorption increases the internal temperature of the polymer fiber and reduces the wavelength of any POF Bragg grating (POFBG) inscribed within the fiber. In this letter, we have investigated the wavelength drift of FBGs inscribed in poly(methyl methacrylate)-based fiber under illumination at different wavelengths. The experiments have shown that the characteristic wavelength of such a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fiber is established, depending on the surrounding humidity, optical power applied, and operation wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and highly sensitive liquid level sensor based on a polymer optical fiber Bragg grating (POFBG) is reported for the first time. The sensitivity of the sensor is found to be 57 pm/cm of liquid, enhanced by more than a factor of 5 when compared to an equivalent sensor based on silica fiber. © 2015 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of annealing behavior of drawn PMMA fibers was performed. Annealing dynamics were investigated under different environmental conditions by fiber longitudinal shrinkage monitoring. The shrinkage process was found to follow a stretched exponential decay function revealing the heterogeneous nature of the underlying molecular dynamics. The complex dependence of the fiber shrinkage on initial degree of molecular alignment in the fiber, annealing time and temperature was investigated and interpreted. Moreover, humidity was shown to have a profound effect on the annealing process, which was not recognized previously. Annealing was also shown to have considerable effect on the fiber mechanical properties associated with the relaxation of molecular alignment in the fiber. The consequences of fiber annealing for the climatic stability of certain polymer optical fiber-based sensors are discussed, emphasizing the importance of fiber controlled pre-annealing with respect to the foreseeable operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fibre Bragg gratings (FBGs) inscribed in microstructured polymer optical fibre (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription the strain was released and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polymer-core/silica-cladding hybrid optical fiber is implemented by filling a capillary with UV-curable epoxy and a following UV-laser scanning exposure. A fiber Bragg grating is successfully inscribed in parallel using a phase mask. The experimental results show a reduced thermal response for the FBG and a theoretical analysis for such a hybrid optical fiber is performed which corroborates existing of a turning temperature for minimized thermal response. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the main application of optical fibers are in the field of telecommunication, optical fiber based sensors of various designs are becoming valuable devices for wide industrial applications. The advantages of optical fiber-based sensors include high sensitivity, insensitivity to electromagnetic radiation; spark free, light weight and minimal intrusiveness due to their relatively small size and deployment in harsh and hostile environments. It has been proved that POI-7 based sensors can be employed to detect a great variety of parameters including temperature, humidity, pressure, refractive index etc. The proposed thesis presented in six chapters deals with the work carried on dye doped and undoped POF for photonic device applications such as amplifier, laser and sensor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have systematically measured the differential stress-optic coefficient, ?C, in a number of poly(methyl methacrylate) (PMMA) fibers drawn with different stress, ranging from 2 up to 27 MPa. ?C was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ?C in PMMA fibers has a negative sign and ranges from -4.5 to -4.5×10-12 Pa-1, depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ?C.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on an optical bend sensor based on a Bragg grating inscribed in an eccentric core polymer optical fiber. The device exhibits the strong fiber orientation dependence, the wide bend curvature range of ± 22.7 m-1 and high bend sensitivity of 63 pm/m-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.