934 resultados para POLYETHYLENE TEREPHTHALATE
Resumo:
Centrifuge coating was implemented to fabricate nanostructured conductive layers through solution processing at room temperature. This coating procedure allows fast evaporation, thereby fixing the nanomaterials in their dispersed state onto a substrate by the centrifuge action. Material wastes were minimized by mitigating the effects of particle reaggregation. Using this method, we fabricate single-wall nanotube coatings on different substrates such as polyethylene terephthalate, polydimethylsiloxane, and an acrylic elastomer with no prior surface modification of the substrate. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2002-2012 IEEE.
Resumo:
The optical, structural and electrical properties of poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) thin films printed by roll-to-roll gravure have been investigated. Corona treatment has been applied to enhance the adhesion of PEDOT:PSS on PolyEthylene Terephthalate (PET) web. It has been found that there was a stronger in-depth surface modification of PET with the increase of corona efficiency; however, the adhesion of PEDOT:PSS was not actually affected. Also, Spectroscopic Ellipsometry and Atomic Force Microscopy have been used to extract information on the mechanisms that define PEDOT:PSS properties. The increase of the drying temperature of the PEDOT:PSS films has been found to reduce the remaining water inside the films and lead to the decrease of the PEDOT:PSS particles size. © 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored.
Resumo:
Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.
Resumo:
This study presents a fully coupled temperature–displacement finite element modelling of the injection stretch-blow moulding (ISBM) process of polyethylene terephthalate (PET) bottles using ABAQUS with a view to optimising the process conditions. A physically-based material model (Buckley model) was used to predict the mechanical behaviour of PET at temperatures slightly above its glass transition temperature. A model incorporating heat transfer between the stretch rod, the preform and the mould was built using axisymmetric solid elements. Extensive finite element analyses were carried out to predict the deformation, the distribution and history of strain and temperature during ISBM of a 20 g–330 ml bottle, which was made in an in situ test on a Sidel SB06 machine. Comparisons of numerical results with the measurements demonstrate that the model can satisfactorily model the sidewall thickness and material distributions. It is also shown that significant non-linear differentials exist in temperature and strain in both bottle thickness and length directions during the process. This justifies the employment of a volume approach to accurately predict the final mechanical properties of the bottles governed by the orientation and crystallinity which are highly temperature and strain dependent.
Resumo:
A 2D isothermal finite element simulation of the injection stretch-blow molding (ISBM) process for polyethylene terephthalate (PET) containers has been developed through the commercial finite element package ABAQUS/standard. In this work, the blowing air to inflate the PET preform was modeled through two different approaches: a direct pressure input (as measured in the blowing machine) and a constant mass flow rate input (based on a pressure-volume-time relationship). The results from these two approaches were validated against free blow and free stretch-blow experiments, which were instrumented and monitored through high-speed video. Results show that simulation using a constant mass flow rate approach gave a better prediction of volume vs. time curve and preform shape evolution when compared with the direct pressure approach and hence is more appropriate in modeling the preblowing stage in the injection stretch-blow molding process
Resumo:
This article is concerned with understanding the behavior of polyethylene terephthalate (PET) in the injection stretch blow molding (ISBM) process where it is typically biaxially stretched to form bottles for the packaging industry. A comprehensive experimental study was undertaken, analyzing the behavior of three different grades of PET under constant width (CW), simultaneous (EB), and sequential (SQ) equal biaxial deformation. Experiments were carried out at temperature and strain rate ranges of 80–110C and 1 /s to 32 /s, respectively, to different stretch ratios. Results show that the biaxial deformation behavior of PET exhibits a strong dependency on forming temperature, strain rate, stretch ratio,deformation mode, and molecular weight. The tests were also monitored via a high speed thermal image camera which showed an increase in temperature between 5C and 15C observed depending on the stretch conditions.
Resumo:
This paper is concerned with understanding the behaviour of Polyethylene Terephthalate (PET) in the injection stretch blow moulding (ISBM) process where it is typically bi-axially stretched to form bottles for the packaging industry. Preforms which have been pre sprayed with a pattern and heated in an oil bath have been stretched and blown in free air using a lab scale ISBM machine whilst being monitored via high speed video. The images have subsequently been analysed using a digital image correlation system (VIC 3D). Results are presented showing the typical deformation modes and strain rates encountered in the ISBM process.
Resumo:
In the production process of polyethylene terephthalate (PET) bottles, the initial temperature of preforms plays a central role on the final thickness, intensity and other structural properties of the bottles. Also, the difference between inside and outside temperature profiles could make a significant impact on the final product quality. The preforms are preheated by infrared heating oven system which is often an open loop system and relies heavily on trial and error approach to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network model, optimized by a two-stage selection (TSS) algorithm combined with partial swarm optimization (PSO), is developed to model the nonlinear relations between the lamp power settings and the output temperature profile of PET bottles. Then an improved PSO method for lamp setting adjustment using the above model is presented. Simulation results based on experimental data confirm the effectiveness of the modelling and optimization method.
Resumo:
Laser transmission joining (LTJ) is growing in importance, and has the potential to become a niche technique for the fabrication of hybrid plastic-metal joints for medical device applications. The possibility of directly joining plastics to metals by LTJ has been demonstrated by a number of recent studies. However, a reliable and quantitative method for defining the contact area between the plastic and metal, facilitating calculation of the mechanical shear stress of the hybrid joints, is still lacking. A new method, based on image analysis using ImageJ, is proposed here to quantify the contact area at the joint interface. The effect of discolouration on the mechanical performance of the hybrid joints is also reported for the first time. Biocompatible polyethylene terephthalate (PET) and commercially pure titanium (Ti) were selected as materials for laser joining using a 200 W CW fibre laser system. The effect of laser power, scanning speed and stand-off distance between the nozzle tip and top surface of the plastic were studied and analysed by Taguchi L9 orthogonal array and ANOVA respectively. The surface morphology, structure and elemental composition on the PET and Ti surfaces after shearing/peeling apart were characterized by SEM, EDX, XRD and XPS.
Resumo:
Esta tese centra-se no desenvolvimento de materiais biodegradáveis e nãodegradáveis produzidos por eletrofiação com aplicação na área biomédica. O poli(3-hidroxibutirato-co-3-hidroxivalerato) (PHBV), um poliéster biodegradável, foi selecionado como base dos materiais biodegradáveis, enquanto o poli(tereftalato de etileno) (PET), um polímero sintético, estável e biocompatível, foi selecionado para a produção das matrizes não degradáveis. Adicionou-se quitosana aos sistemas com o objetivo de melhorar o processo de eletrofiação e as propriedades morfológicas, físico-químicas e biológicas dos materiais resultantes. A composição química, bem como as características morfológicas e físicoquímicas dos materiais em estudo, foram manipuladas de modo a otimizar a sua performance como suportes celulares para engenharia de tecidos. Foram realizados estudos in vitro com cultura de fibroblastos L929 para avaliar o comportamento das células, i.e. viabilidade, adesão, proliferação e morte, quando cultivadas nas matrizes produzidas por eletrofiação. Adicionalmente foram realizados ensaios in vivo para investigar o potencial dos materiais em estudo na regeneração cutânea e como tela abdominal. Os principais resultados encontrados incluem: o desenvolvimento de novas matrizes híbridas (PHBV/quitosana) adequadas ao crescimento de fibroblastos e ao tratamento de lesões de pele; o desenvolvimento de um sistema de eletrofiação com duas seringas para a incorporação de compostos bioativos; diversas estratégias para manipulação das características morfológicas dos materiais de PHBV/quitosana e PET/quitosana produzidos por eletrofiação; uma melhoria do conhecimento das interações fibroblastos-suporte polimérico; a verificação de uma resposta inflamatória desencadeada pelos materiais nãodegradáveis quando utilizados no tratamento de defeitos da parede abdominal, o que sugere a necessidade de novos estudos para avaliar a segurança do uso de biomateriais produzidos por eletrofiação.
Resumo:
Various synthesis routes have been developed in recent years for the preparation of nanoparticles. One of those methods is polymer induced crystallization. The first objective of the present work was to prepare nano ZnO powder by polymer induced crystallization in chitosan solution and to characterize the material using different techniques like TEM, SEM, XRD, FTLR, UV spectroscopy, TGA, DSC etc.The second object of the study is to prepare composites using nano ZnO. It has been undertaken to explore the potential of nano ZnO as reinforcement in engineering as well as commodity thermoplastics to widen their application spectra. We selected three engineering thermoplastics like [poly ethylene terephthalate, polyamide 6, and polycarbonate] and three commodity plastics like [polypropylene, high density polyethylene, and polystyrene] for the study. To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Modification of polymers could reduce impact performance. The present study also focused on whether nano ZnO can act as a modifier for thennoplastics, without sacrificing their impact strength.
Resumo:
Este trabajo consta de cinco capítulos acerca de Colpet Ltda trata sobre el problema de contaminación del residuo sólido POLIETILENO TEREFTALATO (PET), material utilizado para la fabricación de envases.